GlobalAveragePool#
GlobalAveragePool - 1#
Version
domain: main
since_version: 1
function:
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 1.
Summary
Inputs
X (heterogeneous) - T:
Outputs
Y (heterogeneous) - T:
Type Constraints
T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.
Examples
default
import numpy as np
import onnx
node = onnx.helper.make_node(
"GlobalAveragePool",
inputs=["x"],
outputs=["y"],
)
x = np.random.randn(1, 3, 5, 5).astype(np.float32)
y = np.mean(x, axis=tuple(range(2, np.ndim(x))), keepdims=True)
expect(node, inputs=[x], outputs=[y], name="test_globalaveragepool")
_globalaveragepool_precomputed
import numpy as np
import onnx
node = onnx.helper.make_node(
"GlobalAveragePool",
inputs=["x"],
outputs=["y"],
)
x = np.array(
[
[
[
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
]
]
]
).astype(np.float32)
y = np.array([[[[5]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name="test_globalaveragepool_precomputed")