com.microsoft - QuantizeLinear#
QuantizeLinear - 1#
Version
name: QuantizeLinear (GitHub)
domain: com.microsoft
since_version: 1
function:
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 1 of domain com.microsoft.
Summary
Attributes
axis - INT : The axis along which same quantization parameters are applied. It’s optional.If it’s not specified, it means per-tensor quantization and input ‘x_scale’ and ‘x_zero_point’ must be scalars.If it’s specified, it means per ‘axis’ quantization and input ‘x_scale’ and ‘x_zero_point’ must be 1-D tensors.
Inputs
x (heterogeneous) - T1:
y_scale (heterogeneous) - T1:
y_zero_point (heterogeneous) - T2:
Outputs
y (heterogeneous) - T2:
Type Constraints
T1 in ( tensor(float), tensor(float16) ): Constrain ‘x’, ‘y_scale’ to float tensors.
T2 in ( tensor(int8), tensor(uint8) ): Constrain ‘y_zero_point’ and ‘y’ to 8-bit integer tensors.
Examples
default
import numpy as np
import onnx
node = onnx.helper.make_node(
"QuantizeLinear",
inputs=["x", "y_scale", "y_zero_point"],
outputs=["y"],
)
x = np.array([0, 2, 3, 1000, -254, -1000]).astype(np.float32)
y_scale = np.float32(2)
y_zero_point = np.uint8(128)
y = np.array([128, 129, 130, 255, 1, 0]).astype(np.uint8)
expect(
node,
inputs=[x, y_scale, y_zero_point],
outputs=[y],
name="test_quantizelinear",
)
_axis
import numpy as np
import onnx
node = onnx.helper.make_node(
"QuantizeLinear",
inputs=["x", "y_scale", "y_zero_point"],
outputs=["y"],
)
x = np.array(
[
[
[[-162, 10], [-100, 232], [-20, -50]],
[[-76, 0], [0, 252], [32, -44]],
[[245, -485], [-960, -270], [-375, -470]],
],
],
dtype=np.float32,
)
y_scale = np.array([2, 4, 5], dtype=np.float32)
y_zero_point = np.array([84, 24, 196], dtype=np.uint8)
y = (x / y_scale.reshape(1, 3, 1, 1) + y_zero_point.reshape(1, 3, 1, 1)).astype(
np.uint8
)
expect(
node,
inputs=[x, y_scale, y_zero_point],
outputs=[y],
name="test_quantizelinear_axis",
)
_e4m3fn
import numpy as np
import onnx
node = onnx.helper.make_node(
"QuantizeLinear",
inputs=["x", "y_scale", "y_zero_point"],
outputs=["y"],
)
x = np.array([0.0, 1.0, 2.0, 100000.0, 200.0]).astype(np.float32)
y_scale = np.float32(2)
y_zero_point = make_tensor("zero_point", TensorProto.FLOAT8E4M3FN, [1], [0])
y = make_tensor(
"zero_point", TensorProto.FLOAT8E4M3FN, [5], [0, 0.5, 1, 448, 104]
)
expect(
node,
inputs=[x, y_scale, y_zero_point],
outputs=[y],
name="test_quantizelinear_e4m3fn",
)
_e5m2
import numpy as np
import onnx
node = onnx.helper.make_node(
"QuantizeLinear",
inputs=["x", "y_scale", "y_zero_point"],
outputs=["y"],
)
x = np.array([0.0, 1.0, 2.0, 100000.0, 200.0]).astype(np.float32)
y_scale = np.float32(2)
y_zero_point = make_tensor("zero_point", TensorProto.FLOAT8E5M2, [1], [0.0])
y = make_tensor(
"zero_point", TensorProto.FLOAT8E5M2, [5], [0, 0.5, 1, 49152, 96]
)
expect(
node,
inputs=[x, y_scale, y_zero_point],
outputs=[y],
name="test_quantizelinear_e5m2",
)