ai.onnx.ml - LinearRegressor#
LinearRegressor - 1#
Version
name: LinearRegressor (GitHub)
domain: ai.onnx.ml
since_version: 1
function:
support_level: SupportType.COMMON
shape inference: False
This version of the operator has been available since version 1 of domain ai.onnx.ml.
Summary
Attributes
coefficients - FLOATS : Weights of the model(s).
intercepts - FLOATS : Weights of the intercepts, if used.
post_transform - STRING : Indicates the transform to apply to the regression output vector.<br>One of ‘NONE,’ ‘SOFTMAX,’ ‘LOGISTIC,’ ‘SOFTMAX_ZERO,’ or ‘PROBIT’
targets - INT : The total number of regression targets, 1 if not defined.
Inputs
X (heterogeneous) - T:
Outputs
Y (heterogeneous) - tensor(float):
Type Constraints
T in ( tensor(double), tensor(float), tensor(int32), tensor(int64) ): The input must be a tensor of a numeric type.
Examples