HistGradientBoostingClassifier - m-cl - default - {‘zipmap’: False}#

Fitted on a problem type m-cl (see find_suitable_problem), method predict_proba matches output . Model was converted with additional parameter: <class 'sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier'>={'zipmap': False}.

HistGradientBoostingClassifier(random_state=0)

index

0

skl_nop

1

onx_size

75584

onx_nnodes

1

onx_ninits

0

onx_doc_string

onx_ir_version

8

onx_domain

ai.onnx

onx_model_version

0

onx_producer_name

skl2onnx

onx_producer_version

1.11.1

onx_ai.onnx.ml

1

onx_

15

onx_size_optim

75584

onx_nnodes_optim

1

onx_ninits_optim

0

fit_classes_.shape

3

fit_train_score_.shape

0

fit_validation_score_.shape

0

fit__predictors.size

100

fit__predictors.sum|tree_.leave_count

1143

fit__predictors.sum|tree_.node_count

1986

fit__predictors.max|tree_.max_depth

4

%0 X X float((0, 4)) TreeEnsembleClassifier TreeEnsembleClassifier (TreeEnsembleClassifier) base_values=[-1.1631508 -1.0549... class_ids=[0 0 1 ... 2 2 2] class_nodeids=[1 2 2 ... 1 3 4] class_treeids=[  0   0   1 ... ... class_weights=[ 0.32       -0.1... classlabels_int64s=[0 1 2] nodes_falsenodeids=[2 0 0 ... 4... nodes_featureids=[2 0 0 ... 2 0... nodes_hitrates=[1. 1. 1. ... 1.... nodes_missing_value_tracks_true=[0 0 0 ...... nodes_modes=[b'BRANCH_LEQ' b'LE... nodes_nodeids=[0 1 2 ... 2 3 4] nodes_treeids=[  0   0   0 ... ... nodes_truenodeids=[1 0 0 ... 3 ... nodes_values=[2.548984  0.     ... post_transform=b'SOFTMAX' X->TreeEnsembleClassifier label label int64((0,)) probabilities probabilities float((0, 3)) TreeEnsembleClassifier->label TreeEnsembleClassifier->probabilities