VotingClassifier - b-cl - logreg-noflatten - {‘zipmap’: False}#

Fitted on a problem type b-cl (see find_suitable_problem), method predict_proba matches output . Model was converted with additional parameter: <class 'sklearn.ensemble._voting.VotingClassifier'>={'zipmap': False}.

VotingClassifier(estimators=[('lr1', LogisticRegression(solver='liblinear')),
                         ('lr2',
                          LogisticRegression(fit_intercept=False,
                                             solver='liblinear'))],
             flatten_transform=False, n_jobs=8, voting='soft')

index

0

skl_nop

3

skl_ncoef

2

skl_nlin

2

onx_size

1442

onx_nnodes

12

onx_ninits

4

onx_doc_string

onx_ir_version

8

onx_domain

ai.onnx

onx_model_version

0

onx_producer_name

skl2onnx

onx_producer_version

1.11.1

onx_

15

onx_ai.onnx.ml

1

onx_op_Cast

2

onx_op_Reshape

1

onx_size_optim

1417

onx_nnodes_optim

12

onx_ninits_optim

3

fit_classes_.shape

2

fit_estimators_.size

2

fit_estimators_.intercept_.shape

1

fit_estimators_.coef_.shape

(1, 4)

fit_estimators_.n_iter_.shape

1

fit_estimators_.classes_.shape

2