Installation
Tutorial
API
ONNX, Runtime, Backends
scikit-learn Converters and Benchmarks
Command lines
Examples
FAQ, code, …
Gallery of examples
Notebook Gallery
History
ONNX New Converters
Visual Representation of scikit-learn models
calibration
cluster
compose
covariance
cross_decomposition
decomposition
discriminant_analysis
ensemble
feature_extraction
feature_selection
RFE - num+y-tr - reg -
RFECV - num+y-tr - reg -
SelectFdr - num+y-tr-cl - default -
SelectFpr - num+y-tr-cl - default -
SelectFwe - num+y-tr-cl - alpha100 -
SelectKBest - num+y-tr - k2 -
SelectFromModel - num+y-tr - rf -
SelectPercentile - num+y-tr - p50 -
VarianceThreshold - num-tr - default -
gaussian_process
impute
isotonic
kernel_approximation
kernel_ridge
linear_model
mixture
mlprodict.onnx_conv
model_selection
multiclass
multioutput
naive_bayes
neighbors
neural_network
preprocessing
random_projection
semi_supervised
svm
tree
Availability of scikit-learn model for runtime python_compiled
Availability of scikit-learn model for runtime onnxruntime1
feature_selection
#
RFE - num+y-tr - reg -
RFECV - num+y-tr - reg -
SelectFdr - num+y-tr-cl - default -
SelectFpr - num+y-tr-cl - default -
SelectFwe - num+y-tr-cl - alpha100 -
SelectKBest - num+y-tr - k2 -
SelectFromModel - num+y-tr - rf -
SelectPercentile - num+y-tr - p50 -
VarianceThreshold - num-tr - default -
previous
TfidfVectorizer - text-col - default -
next
RFE - num+y-tr - reg -