StackingClassifier - b-cl - logreg - {‘zipmap’: False}#

Fitted on a problem type b-cl (see find_suitable_problem), method predict_proba matches output . Model was converted with additional parameter: <class 'sklearn.ensemble._stacking.StackingClassifier'>={'zipmap': False}.

StackingClassifier(estimators=[('lr1', LogisticRegression(solver='liblinear')),
                           ('lr2',
                            LogisticRegression(fit_intercept=False,
                                               solver='liblinear'))],
               n_jobs=8)

index

0

skl_nop

3

skl_ncoef

2

skl_nlin

2

onx_size

2207

onx_nnodes

17

onx_ninits

3

onx_doc_string

onx_ir_version

8

onx_domain

ai.onnx

onx_model_version

0

onx_producer_name

skl2onnx

onx_producer_version

1.11.1

onx_

14

onx_ai.onnx.ml

1

onx_op_Cast

4

onx_op_Identity

1

onx_op_Reshape

1

onx_size_optim

2116

onx_nnodes_optim

16

onx_ninits_optim

3

fit_classes_.shape

2

fit_estimators_.size

2

fit_estimators_.intercept_.shape

1

fit_estimators_.coef_.shape

(1, 4)

fit_estimators_.n_iter_.shape

1

fit_estimators_.classes_.shape

2