RandomForestClassifier - b-cl - default - {‘zipmap’: False}#

Fitted on a problem type b-cl (see find_suitable_problem), method predict_proba matches output . Model was converted with additional parameter: <class 'sklearn.ensemble._forest.RandomForestClassifier'>={'zipmap': False}.

RandomForestClassifier(n_estimators=10, n_jobs=8, random_state=0)

index

0

skl_nop

11

skl_nnodes

74

skl_ntrees

10

skl_max_depth

5

onx_size

3331

onx_nnodes

1

onx_ninits

0

onx_doc_string

onx_ir_version

8

onx_domain

ai.onnx

onx_model_version

0

onx_producer_name

skl2onnx

onx_producer_version

1.11.1

onx_ai.onnx.ml

1

onx_

15

onx_size_optim

3331

onx_nnodes_optim

1

onx_ninits_optim

0

fit_classes_.shape

2

fit_n_classes_

2

fit_n_features_

4

fit_estimators_.size

10

fit_estimators_.n_classes_

2

fit_estimators_.sum|tree_.node_count

74

fit_estimators_.classes_.shape

2

fit_estimators_.sum|tree_.leave_count

42

fit_estimators_.n_features_

4

fit_estimators_.max|tree_.max_depth

5