AdaBoostClassifier - m-cl - default - {‘zipmap’: False}#

Fitted on a problem type m-cl (see find_suitable_problem), method predict_proba matches output . Model was converted with additional parameter: <class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>={'zipmap': False}.

AdaBoostClassifier(n_estimators=10, random_state=0)

index

0

skl_nop

11

skl_nnodes

30

skl_ntrees

10

skl_max_depth

1

onx_size

11613

onx_nnodes

95

onx_ninits

10

onx_doc_string

onx_ir_version

8

onx_domain

ai.onnx

onx_model_version

0

onx_producer_name

skl2onnx

onx_producer_version

1.11.1

onx_

15

onx_ai.onnx.ml

1

onx_op_Cast

3

onx_op_Reshape

12

onx_size_optim

8578

onx_nnodes_optim

71

onx_ninits_optim

10

fit_estimator_weights_.shape

10

fit_estimator_errors_.shape

10

fit_classes_.shape

3

fit_n_classes_

3

fit_estimators_.size

10

fit_estimators_.n_classes_

3

fit_estimators_.sum|tree_.node_count

30

fit_estimators_.classes_.shape

3

fit_estimators_.sum|tree_.leave_count

20

fit_estimators_.n_features_

4

fit_estimators_.max|tree_.max_depth

1