ONNX New Converters#
mlprodict implements a couple of converters.
The function register_converters
registers
them and makes them visible to sklearn-onnx so that
a pipeline including one of the supported operators
can be fully converted.
<<<
from mlprodict.onnx_conv.register import register_converters
from pandas import DataFrame
from pyquickhelper.pandashelper import df2rst
models = register_converters()
data = [(cl.__name__,
dict(name=cl.__name__,
module=":epkg:`{}`".format(cl.__module__.split('.')[0])))
for cl in models]
data.sort()
data = [_[1] for _ in data]
df = DataFrame(data)
print(df2rst(df))
>>>
name |
module |
---|---|
Booster |
|
CustomScorerTransform |
|
LGBMClassifier |
|
LGBMRegressor |
|
TransferTransformer |
|
WOETransformer |
|
WrappedLightGbmBooster |
|
WrappedLightGbmBoosterClassifier |
|
XGBClassifier |
|
XGBRegressor |