ONNX side by side#

Links: notebook, html, PDF, python, slides, GitHub

The notebook compares two runtimes for the same ONNX and looks into differences at each step of the graph.

from jyquickhelper import add_notebook_menu
add_notebook_menu()
%load_ext mlprodict
The mlprodict extension is already loaded. To reload it, use:
  %reload_ext mlprodict
%matplotlib inline

The ONNX model#

We convert kernel function used in GaussianProcessRegressor. First some values to use for testing.

import numpy
import pandas
from io import StringIO

Xtest = pandas.read_csv(StringIO("""
1.000000000000000000e+02,1.061277971307766705e+02,1.472195004809226493e+00,2.307125069497626552e-02,4.539948095743629591e-02,2.855191098141335870e-01
1.000000000000000000e+02,9.417031896832908444e+01,1.249743892709246573e+00,2.370416174339620707e-02,2.613847280316268853e-02,5.097165413593484073e-01
1.000000000000000000e+02,9.305231488674536422e+01,1.795726729335217264e+00,2.473274733802270642e-02,1.349765645107412620e-02,9.410288840541443378e-02
1.000000000000000000e+02,7.411264142156210255e+01,1.747723020195752319e+00,1.559695663417645997e-02,4.230394035515055301e-02,2.225492746314280956e-01
1.000000000000000000e+02,9.326006195761877393e+01,1.738860294343326229e+00,2.280160135767652502e-02,4.883335335161764074e-02,2.806808409247734115e-01
1.000000000000000000e+02,8.341529291866362428e+01,5.119682123742423929e-01,2.488795768635816003e-02,4.887573336092913834e-02,1.673462179673477768e-01
1.000000000000000000e+02,1.182436477919874562e+02,1.733516391831658954e+00,1.533520930349476820e-02,3.131213519485807895e-02,1.955345358785769427e-01
1.000000000000000000e+02,1.228982583299257101e+02,1.115599996405831629e+00,1.929354155079938959e-02,3.056996308544096715e-03,1.197052763998271013e-01
1.000000000000000000e+02,1.160303269386108838e+02,1.018627021014927303e+00,2.248784981616459844e-02,2.688111547114307651e-02,3.326105131778724355e-01
1.000000000000000000e+02,1.163414374640396005e+02,6.644299545804077667e-01,1.508088417713602906e-02,4.451836657613789106e-02,3.245643044204808425e-01
""".strip("\n\r ")), header=None).values

Then the kernel.

from sklearn.gaussian_process.kernels import RBF, ConstantKernel as CK, Sum

ker = Sum(
    CK(0.1, (1e-3, 1e3)) * RBF(length_scale=10,
                               length_scale_bounds=(1e-3, 1e3)),
    CK(0.1, (1e-3, 1e3)) * RBF(length_scale=1,
                               length_scale_bounds=(1e-3, 1e3))
)

ker
0.316**2 * RBF(length_scale=10) + 0.316**2 * RBF(length_scale=1)
ker(Xtest)
array([[2.00000000e-01, 4.88993040e-02, 4.25048140e-02, 5.94472678e-04,
        4.36813578e-02, 7.54738292e-03, 4.79816083e-02, 2.44870899e-02,
        6.11804858e-02, 5.91636643e-02],
       [4.88993040e-02, 2.00000000e-01, 1.41439850e-01, 1.33559792e-02,
        1.56539930e-01, 5.58967934e-02, 5.50622994e-03, 1.61259456e-03,
        9.16550083e-03, 8.54623880e-03],
       [4.25048140e-02, 1.41439850e-01, 2.00000000e-01, 1.66351088e-02,
        1.95919797e-01, 6.23358040e-02, 4.18740453e-03, 1.16061688e-03,
        7.11297248e-03, 6.59679571e-03],
       [5.94472678e-04, 1.33559792e-02, 1.66351088e-02, 2.00000000e-01,
        1.59911246e-02, 6.43812362e-02, 5.90141166e-06, 6.77520700e-07,
        1.52525053e-05, 1.33384349e-05],
       [4.36813578e-02, 1.56539930e-01, 1.95919797e-01, 1.59911246e-02,
        2.00000000e-01, 6.11287461e-02, 4.41158561e-03, 1.23488073e-03,
        7.46433076e-03, 6.92846776e-03],
       [7.54738292e-03, 5.58967934e-02, 6.23358040e-02, 6.43812362e-02,
        6.11287461e-02, 2.00000000e-01, 2.30531400e-04, 4.11226399e-05,
        4.89214341e-04, 4.42318453e-04],
       [4.79816083e-02, 5.50622994e-03, 4.18740453e-03, 5.90141166e-06,
        4.41158561e-03, 2.30531400e-04, 2.00000000e-01, 8.95609518e-02,
        1.03946894e-01, 1.06810568e-01],
       [2.44870899e-02, 1.61259456e-03, 1.16061688e-03, 6.77520700e-07,
        1.23488073e-03, 4.11226399e-05, 8.95609518e-02, 2.00000000e-01,
        7.89686728e-02, 8.05577562e-02],
       [6.11804858e-02, 9.16550083e-03, 7.11297248e-03, 1.52525053e-05,
        7.46433076e-03, 4.89214341e-04, 1.03946894e-01, 7.89686728e-02,
        2.00000000e-01, 1.89352355e-01],
       [5.91636643e-02, 8.54623880e-03, 6.59679571e-03, 1.33384349e-05,
        6.92846776e-03, 4.42318453e-04, 1.06810568e-01, 8.05577562e-02,
        1.89352355e-01, 2.00000000e-01]])

Conversion to ONNX#

The function is not an operator, the function to use is specific to this usage.

from skl2onnx.operator_converters.gaussian_process import convert_kernel
from skl2onnx.common.data_types import FloatTensorType, DoubleTensorType
from skl2onnx.algebra.onnx_ops import OnnxIdentity
onnx_op = convert_kernel(ker, 'X', output_names=['final_after_op_Add'],
                         dtype=numpy.float32, op_version=12)
onnx_op = OnnxIdentity(onnx_op, output_names=['Y'], op_version=12)
model_onnx = model_onnx = onnx_op.to_onnx(
                inputs=[('X', FloatTensorType([None, None]))],
                target_opset=12)

with open("model_onnx.onnx", "wb") as f:
    f.write(model_onnx.SerializeToString())

[('X', FloatTensorType([None, None]))] means the function applies on every tensor whatever its dimension is.

%onnxview model_onnx
from mlprodict.onnxrt import OnnxInference
from mlprodict.tools.asv_options_helper import get_ir_version_from_onnx
# line needed when onnx is more recent than onnxruntime
model_onnx.ir_version = get_ir_version_from_onnx()
pyrun = OnnxInference(model_onnx, inplace=False)
rtrun = OnnxInference(model_onnx, runtime="onnxruntime1")
pyres = pyrun.run({'X': Xtest.astype(numpy.float32)})
pyres
{'Y': array([[2.00000003e-01, 4.88993339e-02, 4.25047986e-02, 5.94472338e-04,
         4.36813496e-02, 7.54737947e-03, 4.79816124e-02, 2.44870633e-02,
         6.11804537e-02, 5.91636561e-02],
        [4.88993339e-02, 2.00000003e-01, 1.41439855e-01, 1.33559676e-02,
         1.56540006e-01, 5.58967553e-02, 5.50623611e-03, 1.61259342e-03,
         9.16550029e-03, 8.54624342e-03],
        [4.25047986e-02, 1.41439855e-01, 2.00000003e-01, 1.66351143e-02,
         1.95919767e-01, 6.23358004e-02, 4.18740092e-03, 1.16061396e-03,
         7.11296080e-03, 6.59678876e-03],
        [5.94472338e-04, 1.33559676e-02, 1.66351143e-02, 2.00000003e-01,
         1.59911271e-02, 6.43812567e-02, 5.90140644e-06, 6.77518699e-07,
         1.52524681e-05, 1.33384119e-05],
        [4.36813496e-02, 1.56540006e-01, 1.95919767e-01, 1.59911271e-02,
         2.00000003e-01, 6.11287355e-02, 4.41158377e-03, 1.23487751e-03,
         7.46431900e-03, 6.92846393e-03],
        [7.54737947e-03, 5.58967553e-02, 6.23358004e-02, 6.43812567e-02,
         6.11287355e-02, 2.00000003e-01, 2.30531194e-04, 4.11224828e-05,
         4.89213213e-04, 4.42317745e-04],
        [4.79816124e-02, 5.50623611e-03, 4.18740092e-03, 5.90140644e-06,
         4.41158377e-03, 2.30531194e-04, 2.00000003e-01, 8.95609260e-02,
         1.03946947e-01, 1.06810644e-01],
        [2.44870633e-02, 1.61259342e-03, 1.16061396e-03, 6.77518699e-07,
         1.23487751e-03, 4.11224828e-05, 8.95609260e-02, 2.00000003e-01,
         7.89686665e-02, 8.05577263e-02],
        [6.11804537e-02, 9.16550029e-03, 7.11296080e-03, 1.52524681e-05,
         7.46431900e-03, 4.89213213e-04, 1.03946947e-01, 7.89686665e-02,
         2.00000003e-01, 1.89352334e-01],
        [5.91636561e-02, 8.54624342e-03, 6.59678876e-03, 1.33384119e-05,
         6.92846393e-03, 4.42317745e-04, 1.06810644e-01, 8.05577263e-02,
         1.89352334e-01, 2.00000003e-01]], dtype=float32)}
rtres = rtrun.run({'X': Xtest.astype(numpy.float32)})
rtres
{'Y': array([[2.00000003e-01, 4.88993339e-02, 4.25047986e-02, 5.94472338e-04,
         4.36813496e-02, 7.54737947e-03, 4.79816124e-02, 2.44870633e-02,
         6.11804537e-02, 5.91636561e-02],
        [4.88993339e-02, 2.00000003e-01, 1.41439855e-01, 1.33559657e-02,
         1.56540006e-01, 5.58967553e-02, 5.50623611e-03, 1.61259342e-03,
         9.16550029e-03, 8.54624342e-03],
        [4.25047986e-02, 1.41439855e-01, 2.00000003e-01, 1.66351143e-02,
         1.95919767e-01, 6.23358078e-02, 4.18740092e-03, 1.16061396e-03,
         7.11296080e-03, 6.59678876e-03],
        [5.94472338e-04, 1.33559657e-02, 1.66351143e-02, 2.00000003e-01,
         1.59911271e-02, 6.43812567e-02, 5.90140644e-06, 6.77518699e-07,
         1.52524681e-05, 1.33384119e-05],
        [4.36813496e-02, 1.56540006e-01, 1.95919767e-01, 1.59911271e-02,
         2.00000003e-01, 6.11287355e-02, 4.41158377e-03, 1.23487751e-03,
         7.46431900e-03, 6.92846393e-03],
        [7.54737947e-03, 5.58967553e-02, 6.23358078e-02, 6.43812567e-02,
         6.11287355e-02, 2.00000003e-01, 2.30531194e-04, 4.11224828e-05,
         4.89213213e-04, 4.42317745e-04],
        [4.79816124e-02, 5.50623611e-03, 4.18740092e-03, 5.90140644e-06,
         4.41158377e-03, 2.30531194e-04, 2.00000003e-01, 8.95609260e-02,
         1.03946947e-01, 1.06810644e-01],
        [2.44870633e-02, 1.61259342e-03, 1.16061396e-03, 6.77518699e-07,
         1.23487751e-03, 4.11224828e-05, 8.95609260e-02, 2.00000003e-01,
         7.89686665e-02, 8.05577263e-02],
        [6.11804537e-02, 9.16550029e-03, 7.11296080e-03, 1.52524681e-05,
         7.46431900e-03, 4.89213213e-04, 1.03946947e-01, 7.89686665e-02,
         2.00000003e-01, 1.89352334e-01],
        [5.91636561e-02, 8.54624342e-03, 6.59678876e-03, 1.33384119e-05,
         6.92846393e-03, 4.42317745e-04, 1.06810644e-01, 8.05577263e-02,
         1.89352334e-01, 2.00000003e-01]], dtype=float32)}
from mlprodict.onnxrt.validate.validate_difference import measure_relative_difference
measure_relative_difference(pyres['Y'], rtres['Y'])
9.059079e-08

The last runtime uses the same runtime but with double instead of floats.

onnx_op_64 = convert_kernel(ker, 'X', output_names=['final_after_op_Add'],
                            dtype=numpy.float64, op_version=12)
onnx_op_64 = OnnxIdentity(onnx_op_64, output_names=['Y'], op_version=12)
model_onnx_64 = onnx_op_64.to_onnx(
                    inputs=[('X', DoubleTensorType([None, None]))],
                    target_opset=12)
pyrun64 = OnnxInference(model_onnx_64, runtime="python", inplace=False)
pyres64 = pyrun64.run({'X': Xtest.astype(numpy.float64)})
measure_relative_difference(pyres['Y'], pyres64['Y'])
7.106326595962827e-07

Side by side#

We run every node independently and we compare the output at each step.

%matplotlib inline
from mlprodict.onnxrt.validate.side_by_side import side_by_side_by_values
from pandas import DataFrame

def run_sbs(r1, r2, r3, x):
    sbs = side_by_side_by_values([r1, r2, r3],
                                 inputs=[
                                     {'X': x.astype(numpy.float32)},
                                     {'X': x.astype(numpy.float32)},
                                     {'X': x.astype(numpy.float64)},
                                 ])
    df = DataFrame(sbs)
    dfd = df.drop(['value[0]', 'value[1]', 'value[2]'], axis=1).copy()
    dfd.loc[dfd.cmp == 'ERROR->=inf', 'v[1]'] = 10
    return dfd, sbs

dfd, _ = run_sbs(pyrun, rtrun, pyrun64, Xtest)
dfd
metric step v[0] v[1] v[2] cmp name shape[0] shape[1] shape[2]
0 nb_results -1 49 4.900000e+01 4.900000e+01 OK NaN NaN NaN NaN
1 abs-diff 0 0 0.000000e+00 3.250289e-08 OK X (10, 6) (10, 6) (10, 6)
2 abs-diff 1 0 9.059079e-08 7.106327e-07 OK Y (10, 10) (10, 10) (10, 10)
3 abs-diff 2 0 0.000000e+00 1.490116e-08 OK Ad_Addcst (1,) (1,) (1,)
4 abs-diff 3 0 0.000000e+00 0.000000e+00 OK Sh_shape0 (2,) (2,) (2,)
5 abs-diff 4 0 0.000000e+00 0.000000e+00 OK Co_output0 (10, 6) (10, 6) (10, 6)
6 abs-diff 5 0 0.000000e+00 0.000000e+00 OK Re_reduced0 (10, 1) (10, 1) (10, 1)
7 abs-diff 6 0 0.000000e+00 0.000000e+00 OK Tr_transposed0 (1, 10) (1, 10) (1, 10)
8 abs-diff 7 0 1.000000e+00 7.106327e-07 ERROR->=1.0 Ma_Y0 (10, 10) (10, 10) (10, 10)
9 abs-diff 8 0 4.863269e+00 7.106327e-07 ERROR->=4.9 Ad_C0 (10, 10) (10, 10) (10, 10)
10 abs-diff 9 0 0.000000e+00 0.000000e+00 OK Sh_shape02 (2,) (2,) (2,)
11 abs-diff 10 0 0.000000e+00 0.000000e+00 OK Co_output02 (10, 6) (10, 6) (10, 6)
12 abs-diff 11 0 0.000000e+00 0.000000e+00 OK Re_reduced01 (6,) (6,) (6,)
13 abs-diff 12 0 0.000000e+00 0.000000e+00 OK Sh_shape01 (1,) (1,) (1,)
14 abs-diff 13 0 0.000000e+00 0.000000e+00 OK Co_output01 (6,) (6,) (6,)
15 abs-diff 14 0 0.000000e+00 4.969472e-08 OK Di_C0 (10, 6) (10, 6) (10, 6)
16 abs-diff 15 0 0.000000e+00 4.969472e-08 OK scan0 (10, 6) (10, 6) (10, 6)
17 abs-diff 16 0 9.471974e+01 7.215496e-07 ERROR->=94.7 scan1 (10, 10) (10, 10) (10, 10)
18 abs-diff 17 0 0.000000e+00 0.000000e+00 OK Sh_shape04 (2,) (2,) (2,)
19 abs-diff 18 0 0.000000e+00 0.000000e+00 OK Co_output04 (10, 6) (10, 6) (10, 6)
20 abs-diff 19 0 0.000000e+00 0.000000e+00 OK Re_reduced02 (10, 1) (10, 1) (10, 1)
21 abs-diff 20 0 0.000000e+00 0.000000e+00 OK Sh_shape03 (2,) (2,) (2,)
22 abs-diff 21 0 0.000000e+00 0.000000e+00 OK Co_output03 (10, 1) (10, 1) (10, 1)
23 abs-diff 22 0 4.736030e+01 7.215496e-07 ERROR->=47.4 Mu_C01 (10, 10) (10, 10) (10, 10)
24 abs-diff 23 0 7.247263e-08 7.215496e-07 OK Ex_output0 (10, 10) (10, 10) (10, 10)
25 abs-diff 24 0 5.000000e-01 7.106327e-07 ERROR->=0.5 Mu_C0 (10, 10) (10, 10) (10, 10)
26 abs-diff 25 0 0.000000e+00 0.000000e+00 OK Sh_shape05 (2,) (2,) (2,)
27 abs-diff 26 0 0.000000e+00 0.000000e+00 OK Co_output05 (10, 6) (10, 6) (10, 6)
28 abs-diff 27 0 0.000000e+00 0.000000e+00 OK Re_reduced03 (10, 1) (10, 1) (10, 1)
29 abs-diff 28 0 0.000000e+00 0.000000e+00 OK Tr_transposed01 (1, 10) (1, 10) (1, 10)
30 abs-diff 29 0 1.000000e+00 6.830406e-07 ERROR->=1.0 Ma_Y01 (10, 10) (10, 10) (10, 10)
31 abs-diff 30 0 0.000000e+00 1.490116e-08 OK Ad_Addcst1 (1,) (1,) (1,)
32 abs-diff 31 0 1.000000e+00 6.830406e-07 ERROR->=1.0 Ad_C01 (10, 10) (10, 10) (10, 10)
33 abs-diff 32 0 0.000000e+00 0.000000e+00 OK Sh_shape07 (2,) (2,) (2,)
34 abs-diff 33 0 0.000000e+00 0.000000e+00 OK Co_output07 (10, 6) (10, 6) (10, 6)
35 abs-diff 34 0 0.000000e+00 0.000000e+00 OK Re_reduced04 (6,) (6,) (6,)
36 abs-diff 35 0 0.000000e+00 0.000000e+00 OK Sh_shape06 (1,) (1,) (1,)
37 abs-diff 36 0 0.000000e+00 0.000000e+00 OK Co_output06 (6,) (6,) (6,)
38 abs-diff 37 0 0.000000e+00 3.250289e-08 OK Di_C01 (10, 6) (10, 6) (10, 6)
39 abs-diff 38 0 0.000000e+00 3.250289e-08 OK scan01 (10, 6) (10, 6) (10, 6)
40 abs-diff 39 0 1.947547e+03 6.849032e-07 ERROR->=1947.5 scan11 (10, 10) (10, 10) (10, 10)
41 abs-diff 40 0 0.000000e+00 0.000000e+00 OK Sh_shape09 (2,) (2,) (2,)
42 abs-diff 41 0 0.000000e+00 0.000000e+00 OK Co_output09 (10, 6) (10, 6) (10, 6)
43 abs-diff 42 0 0.000000e+00 0.000000e+00 OK Re_reduced05 (10, 1) (10, 1) (10, 1)
44 abs-diff 43 0 0.000000e+00 0.000000e+00 OK Sh_shape08 (2,) (2,) (2,)
45 abs-diff 44 0 0.000000e+00 0.000000e+00 OK Co_output08 (10, 1) (10, 1) (10, 1)
46 abs-diff 45 0 9.737733e+02 6.849032e-07 ERROR->=973.8 Mu_C03 (10, 10) (10, 10) (10, 10)
47 abs-diff 46 0 0.000000e+00 6.849032e-07 OK Ex_output01 (10, 10) (10, 10) (10, 10)
48 abs-diff 47 0 0.000000e+00 6.830406e-07 OK Mu_C02 (10, 10) (10, 10) (10, 10)
49 abs-diff 48 0 9.059079e-08 7.106327e-07 OK final_after_op_Add (10, 10) (10, 10) (10, 10)
ax = dfd[['name', 'v[2]']].iloc[1:].set_index('name').plot(kind='bar', figsize=(14,4), logy=True)
ax.set_title("relative difference for each output between python and onnxruntime");
../_images/onnx_sbs_23_0.png

Let’s try for other inputs.

import warnings
from matplotlib.cbook.deprecation import MatplotlibDeprecationWarning
import matplotlib.pyplot as plt

with warnings.catch_warnings():
    warnings.simplefilter("ignore", MatplotlibDeprecationWarning)
    values = [4, 6, 8, 12]
    fig, ax = plt.subplots(len(values), 2, figsize=(14, len(values) * 4))

    for i, d in enumerate(values):
        for j, dim in enumerate([3, 8]):
            mat = numpy.random.rand(d, dim)
            dfd, _ = run_sbs(pyrun, rtrun, pyrun64, mat)
            dfd[['name', 'v[1]']].iloc[1:].set_index('name').plot(
                kind='bar', figsize=(14,4), logy=True, ax=ax[i, j])
            ax[i, j].set_title("abs diff input shape {}".format(mat.shape))
            if i < len(values) - 1:
                for xlabel_i in ax[i, j].get_xticklabels():
                    xlabel_i.set_visible(False)
../_images/onnx_sbs_25_0.png

Further analysis#

If there is one issue, we can create a simple graph to test. We consider Y = A + B where A and B have the following name in the ONNX graph:

node = pyrun.sequence_[-2].onnx_node
final_inputs = list(node.input)
final_inputs
['Mu_C0', 'Mu_C02']
_, sbs = run_sbs(pyrun, rtrun, pyrun64, Xtest)

names = final_inputs + ['Y']
values = {}
for row in sbs:
    if row.get('name', '#') not in names:
        continue
    name = row['name']
    values[name] = [row["value[%d]" % i] for i in range(3)]

list(values.keys())
['Y', 'Mu_C0', 'Mu_C02']

Let’s check.

for name in names:
    if name not in values:
        raise Exception("Unable to find '{}' in\n{}".format(
            name, [_.get('name', "?") for _ in sbs]))

a, b, c = names
for i in [0, 1, 2]:
    A = values[a][i]
    B = values[b][i]
    Y = values[c][i]
    diff = Y - (A + B)
    dabs = numpy.max(numpy.abs(diff))
    print(i, diff.dtype, dabs)
0 float32 0.10000001
1 float32 0.0
2 float64 0.10000000000000003

If the second runtime has issue, we can create a single node to check something.

from skl2onnx.algebra.onnx_ops import OnnxAdd
onnx_add = OnnxAdd('X1', 'X2', output_names=['Y'], op_version=12)
add_onnx = onnx_add.to_onnx({'X1': A, 'X2': B}, target_opset=12)
add_onnx.ir_version = get_ir_version_from_onnx()
pyrun_add = OnnxInference(add_onnx, inplace=False)
rtrun_add = OnnxInference(add_onnx, runtime="onnxruntime1")
res1 = pyrun_add.run({'X1': A, 'X2': B})
res2 = rtrun_add.run({'X1': A, 'X2': B})
measure_relative_difference(res1['Y'], res2['Y'])
0.0

No mistake here.

onnxruntime#

from onnxruntime import InferenceSession, RunOptions, SessionOptions
opt = SessionOptions()
opt.enable_mem_pattern = True
opt.enable_cpu_mem_arena = True
sess = InferenceSession(model_onnx.SerializeToString(), opt)
sess
<onnxruntime.capi.session.InferenceSession at 0x22d1e846278>
res = sess.run(None, {'X': Xtest.astype(numpy.float32)})[0]
measure_relative_difference(pyres['Y'], res)
9.059079e-08
res = sess.run(None, {'X': Xtest.astype(numpy.float32)})[0]
measure_relative_difference(pyres['Y'], res)
9.059079e-08

Side by side for MLPRegressor#

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPRegressor
iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y)
clr = MLPRegressor()
clr.fit(X_train, y_train)
MLPRegressor()
from mlprodict.onnx_conv import to_onnx
onx = to_onnx(clr, X_train.astype(numpy.float32), target_opset=12)
onx.ir_version = get_ir_version_from_onnx()
pyrun = OnnxInference(onx, runtime="python", inplace=False)
rtrun = OnnxInference(onx, runtime="onnxruntime1")
rt_partial_run = OnnxInference(onx, runtime="onnxruntime2")
dfd, _ = run_sbs(rtrun, rt_partial_run, pyrun, X_test)
dfd
metric step v[0] v[1] v[2] cmp name shape[0] shape[1] shape[2]
0 nb_results -1 13 13.0 1.300000e+01 OK NaN NaN NaN NaN
1 abs-diff 0 0 0.0 3.973643e-08 OK X (38, 4) (38, 4) (38, 4)
2 abs-diff 1 0 0.0 0.000000e+00 OK coefficient (4, 100) (4, 100) (4, 100)
3 abs-diff 2 0 0.0 0.000000e+00 OK intercepts (1, 100) (1, 100) (1, 100)
4 abs-diff 3 0 0.0 0.000000e+00 OK coefficient1 (100, 1) (100, 1) (100, 1)
5 abs-diff 4 0 0.0 0.000000e+00 OK intercepts1 (1, 1) (1, 1) (1, 1)
6 abs-diff 5 0 0.0 0.000000e+00 OK shape_tensor (2,) (2,) (2,)
7 abs-diff 6 0 0.0 0.000000e+00 OK cast_input (38, 4) (38, 4) (38, 4)
8 abs-diff 7 0 0.0 1.000000e+00 ERROR->=1.0 mul_result (38, 100) (38, 100) (38, 100)
9 abs-diff 8 0 0.0 1.000000e+00 ERROR->=1.0 add_result (38, 100) (38, 100) (38, 100)
10 abs-diff 9 0 0.0 0.000000e+00 OK next_activations (38, 100) (38, 100) (38, 100)
11 abs-diff 10 0 0.0 2.311237e-02 e<0.1 mul_result1 (38, 1) (38, 1) (38, 1)
12 abs-diff 11 0 0.0 0.000000e+00 OK add_result1 (38, 1) (38, 1) (38, 1)
13 abs-diff 12 0 0.0 0.000000e+00 OK variable (38, 1) (38, 1) (38, 1)
%onnxview onx