DecisionTreeRegressor - ~b-reg-f100 - default -#

Fitted on a problem type ~b-reg-f100 (see find_suitable_problem), method predict matches output .

DecisionTreeRegressor(random_state=0)

index

0

skl_nop

1

skl_nnodes

223

skl_ntrees

1

skl_max_depth

11

onx_size

8945

onx_nnodes

1

onx_ninits

0

onx_doc_string

onx_ir_version

8

onx_domain

ai.onnx

onx_model_version

0

onx_producer_name

skl2onnx

onx_producer_version

1.11.1

onx_ai.onnx.ml

1

onx_

15

onx_size_optim

8945

onx_nnodes_optim

1

onx_ninits_optim

0

fit_n_features_

100

fit_tree_.node_count

223

fit_tree_.leave_count

112

fit_tree_.max_depth

11

%0 X X float((0, 100)) TreeEnsembleRegressor TreeEnsembleRegressor (TreeEnsembleRegressor) n_targets=1 nodes_falsenodeids=[ 70  11   4... nodes_featureids=[78  0 20  0 7... nodes_hitrates=[1. 1. 1. 1. 1. ... nodes_missing_value_tracks_true=[0 0 0 0 0... nodes_modes=[b'BRANCH_LEQ' b'BR... nodes_nodeids=[  0   1   2   3 ... nodes_treeids=[0 0 0 0 0 0 0 0 ... nodes_truenodeids=[  1   2   3 ... nodes_values=[2.4957602  0.3514... post_transform=b'NONE' target_ids=[0 0 0 0 0 0 0 0 0 0... target_nodeids=[  3   6   7   9... target_treeids=[0 0 0 0 0 0 0 0... target_weights=[0.13 0.04 0.03 ... X->TreeEnsembleRegressor variable variable float((0, 1)) TreeEnsembleRegressor->variable