SVC - m-cl - linear - {‘zipmap’: False}#

Fitted on a problem type m-cl (see find_suitable_problem), method predict_proba matches output . Model was converted with additional parameter: <class 'sklearn.svm._classes.SVC'>={'zipmap': False}.

SVC(kernel='linear', probability=True, random_state=0)

index

0

skl_nop

1

skl_ncoef

3

skl_nlin

1

onx_size

1481

onx_nnodes

2

onx_ninits

0

onx_doc_string

onx_ir_version

8

onx_domain

ai.onnx

onx_model_version

0

onx_producer_name

skl2onnx

onx_producer_version

1.11.1

onx_ai.onnx.ml

1

onx_

9

onx_op_Cast

1

onx_size_optim

1481

onx_nnodes_optim

2

onx_ninits_optim

0

fit_class_weight_.shape

3

fit_classes_.shape

3

fit_support_.shape

32

fit_support_vectors_.shape

(32, 4)

fit_dual_coef_.shape

(2, 32)

fit_intercept_.shape

3

%0 X X float((0, 4)) SVMc SVMClassifier (SVMc) classlabels_ints=[0 1 2] coefficients=[ 0.03678524  1.  ... kernel_params=[0.06311981 0.   ... kernel_type=b'LINEAR' post_transform=b'NONE' prob_a=[-1.846917  -2.0973501 -... prob_b=[-0.07252295 -0.2737648 ... rho=[3.425572  4.0338955 9.4846... support_vectors=[5.008303   3.1... vectors_per_class=[ 2 16 14] X->SVMc label label int64((0,)) probabilities probabilities float((0, 3)) SVM02 SVM02 Cast Cast (Cast) to=1 SVM02->Cast SVMc->label SVMc->SVM02 Cast->probabilities