OneVsRestClassifier - b-cl - logreg - {‘zipmap’: False}#

Fitted on a problem type b-cl (see find_suitable_problem), method predict_proba matches output . Model was converted with additional parameter: <class 'sklearn.multiclass.OneVsOneClassifier'>={'zipmap': False}.

OneVsRestClassifier(estimator=LogisticRegression(random_state=0,
                                             solver='liblinear'),
                n_jobs=8)

index

0

skl_nop

2

skl_ncoef

2

skl_nlin

2

onx_size

1460

onx_nnodes

14

onx_ninits

5

onx_doc_string

onx_ir_version

8

onx_domain

ai.onnx

onx_model_version

0

onx_producer_name

skl2onnx

onx_producer_version

1.11.1

onx_

15

onx_ai.onnx.ml

1

onx_op_Cast

3

onx_op_ZipMap

1

onx_op_Reshape

1

onx_size_optim

1460

onx_nnodes_optim

14

onx_ninits_optim

5

fit_classes_.shape

2

fit_n_classes_

2

fit_estimators_.size

1

fit_estimators_.n_iter_.shape

1

fit_estimators_.coef_.shape

(1, 4)

fit_estimators_.classes_.shape

2

fit_estimators_.intercept_.shape

1

%0 X X float((0, 4)) LinearClassifier LinearClassifier (LinearClassifier) classlabels_ints=[0 1] coefficients=[ 0.45876738  1.29... intercepts=[ 0.28357968 -0.2835... multi_class=1 post_transform=b'LOGISTIC' X->LinearClassifier output_label output_label int64((0,)) output_probability output_probability [{int64, {'kind': 'tensor', 'elem': 'float', 'shape': }}] starts starts int64((1,)) [1] Slice Slice (Slice) starts->Slice starts->Slice ends ends int64((1,)) [2] ends->Slice unit_float_tensor unit_float_tensor float32(()) 1.0 Sub Sub (Sub) unit_float_tensor->Sub classes classes int32((2,)) [0 1] ArrayFeatureExtractor ArrayFeatureExtractor (ArrayFeatureExtractor) classes->ArrayFeatureExtractor shape_tensor shape_tensor int64((1,)) [-1] Reshape Reshape (Reshape) shape_tensor->Reshape label_0 label_0 probability_tensor probability_tensor Normalizer Normalizer (Normalizer) norm=b'L1' probability_tensor->Normalizer LinearClassifier->label_0 LinearClassifier->probability_tensor proba_0 proba_0 proba_0->Slice Normalizer->proba_0 probY_0 probY_0 Concat Concat (Concat) axis=1 probY_0->Concat Slice->probY_0 concatenated concatenated concatenated->Sub Concat1 Concat (Concat1) axis=1 concatenated->Concat1 Concat->concatenated zeroth_col zeroth_col zeroth_col->Concat1 Sub->zeroth_col merged_prob merged_prob ArgMax ArgMax (ArgMax) axis=1 merged_prob->ArgMax LpNormalization LpNormalization (LpNormalization) axis=1 p=1 merged_prob->LpNormalization Concat1->merged_prob label_name label_name label_name->ArrayFeatureExtractor ArgMax->label_name probabilities probabilities ZipMap ZipMap (ZipMap) classlabels_int64s=[0 1] probabilities->ZipMap LpNormalization->probabilities array_feature_extractor_result array_feature_extractor_result Cast Cast (Cast) to=1 array_feature_extractor_result->Cast ArrayFeatureExtractor->array_feature_extractor_result ZipMap->output_probability cast2_result cast2_result cast2_result->Reshape Cast->cast2_result reshaped_result reshaped_result Cast1 Cast (Cast1) to=7 reshaped_result->Cast1 Reshape->reshaped_result label label Cast2 Cast (Cast2) to=7 label->Cast2 Cast1->label Cast2->output_label