XGBRegressor - b-reg - default -#

Fitted on a problem type b-reg (see find_suitable_problem), method predict matches output .

XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
         colsample_bynode=1, colsample_bytree=1, enable_categorical=False,
         gamma=0, gpu_id=-1, importance_type=None,
         interaction_constraints='', learning_rate=0.300000012,
         max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,
         monotone_constraints='()', n_estimators=100, n_jobs=8,
         num_parallel_tree=1, predictor='auto', random_state=0, reg_alpha=0,
         reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method='exact',
         validate_parameters=1, verbosity=None)

index

0

skl_nop

1

onx_size

81519

onx_nnodes

1

onx_ninits

0

onx_doc_string

onx_ir_version

8

onx_domain

ai.onnx

onx_model_version

0

onx_producer_name

skl2onnx

onx_producer_version

1.11.1

onx_ai.onnx.ml

1

onx_

15

onx_size_optim

81519

onx_nnodes_optim

1

onx_ninits_optim

0

fit_objective

reg:squarederror

fit_estimators_.size

100

fit_node_count

2602

fit_ntrees

100

fit_leave_count

1351

fit_mode_count

2

%0 X X float((0, 4)) TreeEnsembleRegressor TreeEnsembleRegressor (TreeEnsembleRegressor) base_values=[0.5] n_targets=1 nodes_falsenodeids=[16 13  4 ..... nodes_featureids=[2 2 1 ... 0 0... nodes_missing_value_tracks_true=[1 1 1 ...... nodes_modes=[b'BRANCH_LT' b'BRA... nodes_nodeids=[0 1 2 ... 0 0 0] nodes_treeids=[ 0  0  0 ... 97 ... nodes_truenodeids=[1 2 3 ... 0 ... nodes_values=[2.548984  1.73063... post_transform=b'NONE' target_ids=[0 0 0 ... 0 0 0] target_nodeids=[3 6 7 ... 0 0 0... target_treeids=[ 0  0  0 ... 97... target_weights=[-2.1000002e-02 ... X->TreeEnsembleRegressor variable variable float((0, 1)) TreeEnsembleRegressor->variable