GaussianProcessRegressor - b-reg - expsine - cdist#

Fitted on a problem type b-reg (see find_suitable_problem), method predict matches output . Model was converted with additional parameter: <class 'sklearn.gaussian_process._gpr.GaussianProcessRegressor'>={'optim': 'cdist'}.

GaussianProcessRegressor(alpha=20.0,
                     kernel=ExpSineSquared(length_scale=1, periodicity=1),
                     random_state=0)

index

0

skl_nop

1

onx_size

3250

onx_nnodes

11

onx_ninits

9

onx_doc_string

onx_ir_version

8

onx_domain

ai.onnx

onx_model_version

0

onx_producer_name

skl2onnx

onx_producer_version

1.11.1

onx_

15

onx_com.microsoft

1

onx_op_Reshape

1

onx_size_optim

3250

onx_nnodes_optim

11

onx_ninits_optim

9

fit_X_train_.shape

(112, 4)

fit_y_train_.shape

112

fit_log_marginal_likelihood_value_.shape

1

fit_L_.shape

(112, 112)

fit_alpha_.shape

112