GaussianProcessRegressor - b-reg - expsine - cdist#
Fitted on a problem type b-reg
(see find_suitable_problem
),
method predict matches output .
Model was converted with additional parameter: <class 'sklearn.gaussian_process._gpr.GaussianProcessRegressor'>={'optim': 'cdist'}
.
GaussianProcessRegressor(alpha=20.0,
kernel=ExpSineSquared(length_scale=1, periodicity=1),
random_state=0)
index |
0 |
---|---|
skl_nop |
1 |
onx_size |
3250 |
onx_nnodes |
11 |
onx_ninits |
9 |
onx_doc_string |
|
onx_ir_version |
8 |
onx_domain |
ai.onnx |
onx_model_version |
0 |
onx_producer_name |
skl2onnx |
onx_producer_version |
1.11.1 |
15 |
|
onx_com.microsoft |
1 |
onx_op_Reshape |
1 |
onx_size_optim |
3250 |
onx_nnodes_optim |
11 |
onx_ninits_optim |
9 |
fit_X_train_.shape |
(112, 4) |
fit_y_train_.shape |
112 |
1 |
|
fit_L_.shape |
(112, 112) |
fit_alpha_.shape |
112 |