ConcatFromSequence#

ConcatFromSequence - 11#

Version

  • name: ConcatFromSequence (GitHub)

  • domain: main

  • since_version: 11

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 11.

Summary

Concatenate a sequence of tensors into a single tensor. All input tensors must have the same shape, except for the dimension size of the axis to concatenate on. By default ‘new_axis’ is 0, the behavior is similar to numpy.concatenate. When ‘new_axis’ is 1, the behavior is similar to numpy.stack.

Attributes

  • axis (required): Which axis to concat on. Accepted range in [-r, r - 1], where r is the rank of input tensors. When new_axis is 1, accepted range is [-r - 1, r].

  • new_axis: Insert and concatenate on a new axis or not, default 0 means do not insert new axis. Default value is 0.

Inputs

  • input_sequence (heterogeneous) - S: Sequence of tensors for concatenation

Outputs

  • concat_result (heterogeneous) - T: Concatenated tensor

Type Constraints

  • S in ( seq(tensor(bool)), seq(tensor(complex128)), seq(tensor(complex64)), seq(tensor(double)), seq(tensor(float)), seq(tensor(float16)), seq(tensor(int16)), seq(tensor(int32)), seq(tensor(int64)), seq(tensor(int8)), seq(tensor(string)), seq(tensor(uint16)), seq(tensor(uint32)), seq(tensor(uint64)), seq(tensor(uint8)) ): Constrain input types to any tensor type.

  • T in ( tensor(bool), tensor(complex128), tensor(complex64), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain output types to any tensor type.

Examples