Bernoulli#

Bernoulli - 15#

Version

  • name: Bernoulli (GitHub)

  • domain: main

  • since_version: 15

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 15.

Summary

Draws binary random numbers (0 or 1) from a Bernoulli distribution. The input tensor should be a tensor containing probabilities p (a value in the range [0,1]) to be used for drawing the binary random number, where an output of 1 is produced with probability p and an output of 0 is produced with probability (1-p).

This operator is non-deterministic and may not produce the same values in different implementations (even if a seed is specified).

Attributes

  • dtype: The data type for the elements of the output tensor. if not specified, we will use the data type of the input tensor.

  • seed: (Optional) Seed to the random generator, if not specified we will auto generate one.

Inputs

  • input (heterogeneous) - T1: All values in input have to be in the range:[0, 1].

Outputs

  • output (heterogeneous) - T2: The returned output tensor only has values 0 or 1, same shape as input tensor.

Type Constraints

  • T1 in ( tensor(double), tensor(float), tensor(float16) ): Constrain input types to float tensors.

  • T2 in ( tensor(bfloat16), tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain output types to all numeric tensors and bool tensors.

Examples

bernoulli_without_dtype

node = onnx.helper.make_node(
    'Bernoulli',
    inputs=['x'],
    outputs=['y'],
)

x = np.random.uniform(0.0, 1.0, 10).astype(np.float)
y = bernoulli_reference_implementation(x, np.float)
expect(node, inputs=[x], outputs=[y], name='test_bernoulli')

bernoulli_with_dtype

node = onnx.helper.make_node(
    'Bernoulli',
    inputs=['x'],
    outputs=['y'],
    dtype=onnx.TensorProto.DOUBLE,
)

x = np.random.uniform(0.0, 1.0, 10).astype(np.float32)
y = bernoulli_reference_implementation(x, np.float64)
expect(node, inputs=[x], outputs=[y], name='test_bernoulli_double')

bernoulli_with_seed

seed = np.float(0)
node = onnx.helper.make_node(
    'Bernoulli',
    inputs=['x'],
    outputs=['y'],
    seed=seed,
)

x = np.random.uniform(0.0, 1.0, 10).astype(np.float32)
y = bernoulli_reference_implementation(x, np.float32)
expect(node, inputs=[x], outputs=[y], name='test_bernoulli_seed')