module onnxrt.ops_cpu.op_linear_regressor
#
Short summary#
module mlprodict.onnxrt.ops_cpu.op_linear_regressor
Runtime operator.
Classes#
class |
truncated documentation |
---|---|
LinearRegressor (ai.onnx.ml) ============================ Generalized linear regression evaluation. If targets is set … |
Properties#
property |
truncated documentation |
---|---|
|
Returns the list of arguments as well as the list of parameters with the default values (close to the signature). … |
|
Returns the list of modified parameters. |
|
Returns the list of optional arguments. |
|
Returns the list of optional arguments. |
|
Returns all parameters in a dictionary. |
Methods#
method |
truncated documentation |
---|---|
Documentation#
Runtime operator.
- class mlprodict.onnxrt.ops_cpu.op_linear_regressor.LinearRegressor(ai.onnx.ml)#
Bases:
mlprodict.onnxrt.ops_cpu._op.OpRunUnaryNum
Generalized linear regression evaluation.
If targets is set to 1 (default) then univariate regression is performed.
If targets is set to M then M sets of coefficients must be passed in as a sequence and M results will be output for each input n in N.
The coefficients array is of length n, and the coefficients for each target are contiguous. Intercepts are optional but if provided must match the number of targets.
Attributes
coefficients: Weights of the model(s). default value cannot be automatically retrieved (FLOATS)
intercepts: Weights of the intercepts, if used. default value cannot be automatically retrieved (FLOATS)
post_transform: Indicates the transform to apply to the regression output vector. One of ‘NONE,’ ‘SOFTMAX,’ ‘LOGISTIC,’ ‘SOFTMAX_ZERO,’ or ‘PROBIT’ Default value is
nameposttransformsNONEtypeSTRING
(STRING)targets: The total number of regression targets, 1 if not defined. Default value is
nametargetsi1typeINT
(INT)
Inputs
X (heterogeneous)T: Data to be regressed.
Outputs
Y (heterogeneous)tensor(float): Regression outputs (one per target, per example).
Type Constraints
T tensor(float), tensor(double), tensor(int64), tensor(int32): The input must be a tensor of a numeric type.
Version
Onnx name: LinearRegressor
This version of the operator has been available since version 1 of domain ai.onnx.ml.
Runtime implementation:
LinearRegressor
- Parameters
onnx_node – onnx node
desc – internal representation
expected_attributes – expected attributes for this node
options – runtime options
- __init__(onnx_node, desc=None, **options)#
- Parameters
onnx_node – onnx node
desc – internal representation
expected_attributes – expected attributes for this node
options – runtime options
- _run(x)#
Should be overwritten.