module cli.einsum#

Short summary#

module mlprodict.cli.einsum

Command line to check einsum scenarios.

source on GitHub

Functions#

function

truncated documentation

einsum_test

Investigates whether or not the decomposing einsum is faster.

Documentation#

Command line to check einsum scenarios.

source on GitHub

mlprodict.cli.einsum.einsum_test(equation='abc, cd->abd', shape='30', perm=False, runtime='python', verbose=1, fLOG=<built-in function print>, output=None, number=5, repeat=5)#

Investigates whether or not the decomposing einsum is faster.

Parameters
  • equation – einsum equation to test

  • shape – an integer (all dimension gets the same size) or a list of shapes in a string separated with ;) or a list of integer to try out multiple shapes, example: 5, (5,5,5),(5,5), 5,6

  • perm – check on permutation or all letter permutations

  • runtime‘numpy’, ‘python’, ‘onnxruntime’

  • verbose – verbose

  • fLOG – logging function

  • output – output file (usually a csv file or an excel file), it requires pandas

  • number – usual parameter to measure a function

  • repeat – usual parameter to measure a function

Investigates whether or not the decomposing einsum is faster.

The command checks whether or not decomposing an einsum function is faster than einsum implementation.

Example:

python -m mlprodict einsum_test --equation="abc,cd->abd" --output=res.csv

<<<

python -m mlprodict einsum_test --help

>>>

usage: einsum_test [-h] [-e EQUATION] [-s SHAPE] [-p PERM] [-r RUNTIME]
                   [-v VERBOSE] [-o OUTPUT] [-n NUMBER] [-re REPEAT]

Investigates whether or not the decomposing einsum is faster.

optional arguments:
  -h, --help            show this help message and exit
  -e EQUATION, --equation EQUATION
                        einsum equation to test (default: abc,cd->abd)
  -s SHAPE, --shape SHAPE
                        an integer (all dimension gets the same size) or a
                        list of shapes in a string separated with `;`) or a
                        list of integer to try out multiple shapes, example:
                        `5`, `(5,5,5),(5,5)`, `5,6` (default: 30)
  -p PERM, --perm PERM  check on permutation or all letter permutations
                        (default: False)
  -r RUNTIME, --runtime RUNTIME
                        `'numpy'`, `'python'`, `'onnxruntime'` (default:
                        python)
  -v VERBOSE, --verbose VERBOSE
                        verbose (default: 1)
  -o OUTPUT, --output OUTPUT
                        output file (usually a csv file or an excel file), it
                        requires pandas (default: )
  -n NUMBER, --number NUMBER
                        usual parameter to measure a function (default: 5)
  -re REPEAT, --repeat REPEAT
                        usual parameter to measure a function (default: 5)

source on GitHub