onnx.helper

find_min_ir_version_for(opsetidlist)

Given list of opset ids, determine minimum IR version required

get_attribute_value(attr)

make_attribute(key, value[, doc_string])

Makes an AttributeProto based on the value type.

make_empty_tensor_value_info(name)

make_function(domain, fname, inputs, ...[, ...])

make_graph(nodes, name, inputs, outputs[, ...])

Construct a GraphProto

make_map(name, key_type, keys, values)

Make a Map with specified key-value pair arguments.

make_model(graph, **kwargs)

Construct a ModelProto

make_node(op_type, inputs, outputs[, name, ...])

Construct a NodeProto.

make_operatorsetid(domain, version)

Construct an OperatorSetIdProto.

make_opsetid(domain, version)

Construct an OperatorSetIdProto.

make_optional(name, elem_type, value)

Make an Optional with specified value arguments.

make_optional_type_proto(inner_type_proto)

Makes an optional TypeProto.

make_sequence(name, elem_type, values)

Make a Sequence with specified value arguments.

make_sequence_type_proto(inner_type_proto)

Makes a sequence TypeProto.

make_sparse_tensor(values, indices, dims)

Construct a SparseTensorProto

make_sparse_tensor_type_proto(elem_type, shape)

Makes a SparseTensor TypeProto based on the data type and shape.

make_sparse_tensor_value_info(name, ...[, ...])

Makes a SparseTensor ValueInfoProto based on the data type and shape.

make_tensor(name, data_type, dims, vals[, raw])

Make a TensorProto with specified arguments.

make_tensor_sequence_value_info(name, ...[, ...])

Makes a Sequence[Tensors] ValueInfoProto based on the data type and shape.

make_tensor_type_proto(elem_type, shape[, ...])

Makes a Tensor TypeProto based on the data type and shape.

make_training_info(algorithm, ...)

make_tensor_type_proto(elem_type, shape[, ...])

Makes a Tensor TypeProto based on the data type and shape.

make_tensor_value_info(name, elem_type, shape)

Makes a ValueInfoProto based on the data type and shape.

make_value_info(name, type_proto[, doc_string])

Makes a ValueInfoProto with the given type_proto.

printable_attribute(attr[, subgraphs])

printable_dim(dim)

printable_graph(graph[, prefix])

Display a GraphProto as a string.

printable_node(node[, prefix, subgraphs])

printable_tensor_proto(t)

printable_type(t)

printable_value_info(v)

split_complex_to_pairs(ca)

getter

onnx.helper.get_attribute_value(
attr: AttributeProto
) Any[source]

print

onnx.helper.printable_attribute(
attr: AttributeProto,
subgraphs: bool = False
) Union[str, Tuple[str, List[GraphProto]]][source]
onnx.helper.printable_dim(
dim: Dimension
) str[source]
onnx.helper.printable_graph(
graph: GraphProto,
prefix: str = ''
) str[source]

Display a GraphProto as a string.

Parameters:
  • graph (GraphProto) – the graph to display

  • prefix (string) – prefix of every line

Returns:

string

onnx.helper.printable_node(
node: NodeProto,
prefix: str = '',
subgraphs: bool = False
) Union[str, Tuple[str, List[GraphProto]]][source]
onnx.helper.printable_tensor_proto(
t: TensorProto
) str[source]
onnx.helper.printable_type(
t: TypeProto
) str[source]
onnx.helper.printable_value_info(
v: ValueInfoProto
) str[source]

tools

onnx.helper.find_min_ir_version_for(
opsetidlist: List[OperatorSetIdProto]
) int[source]

Given list of opset ids, determine minimum IR version required

onnx.helper.split_complex_to_pairs(
ca: Sequence[complex64]
) Sequence[int][source]

make function

All functions uses to create an ONNX graph.

onnx.helper.make_attribute(
key: str,
value: Any,
doc_string: Optional[str] = None
) AttributeProto[source]

Makes an AttributeProto based on the value type.

onnx.helper.make_empty_tensor_value_info(
name: str
) ValueInfoProto[source]
onnx.helper.make_function(
domain: str,
fname: str,
inputs: Sequence[str],
outputs: Sequence[str],
nodes: Sequence[NodeProto],
opset_imports: Sequence[OperatorSetIdProto],
attributes: Optional[Sequence[str]] = [],
doc_string: Optional[str] = None
) FunctionProto[source]
onnx.helper.make_graph(
nodes: Sequence[NodeProto],
name: str,
inputs: Sequence[ValueInfoProto],
outputs: Sequence[ValueInfoProto],
initializer: Optional[Sequence[TensorProto]] = None,
doc_string: Optional[str] = None,
value_info: Sequence[ValueInfoProto] = [],
sparse_initializer: Optional[Sequence[SparseTensorProto]] = None
) GraphProto[source]

Construct a GraphProto

Parameters:
  • nodes – list of NodeProto

  • name (string) – graph name

  • inputs – list of ValueInfoProto

  • outputs – list of ValueInfoProto

  • initializer – list of TensorProto

  • doc_string (string) – graph documentation

  • value_info – list of ValueInfoProto

  • sparse_initializer – list of SparseTensorProto

Returns:

GraphProto

onnx.helper.make_map(
name: str,
key_type: int,
keys: List[Any],
values: SequenceProto
) MapProto[source]

Make a Map with specified key-value pair arguments.

Criteria for conversion: - Keys and Values must have the same number of elements - Every key in keys must be of the same type - Every value in values must be of the same type

onnx.helper.make_model(
graph: GraphProto,
**kwargs: Any
) ModelProto[source]

Construct a ModelProto

Parameters:
  • graph (GraphProto) – make_graph returns

  • **kwargs – any attribute to add to the returned instance

Returns:

ModelProto

onnx.helper.make_node(
op_type: str,
inputs: Sequence[str],
outputs: Sequence[str],
name: Optional[str] = None,
doc_string: Optional[str] = None,
domain: Optional[str] = None,
**kwargs: Any
) NodeProto[source]

Construct a NodeProto.

Parameters:
  • op_type (string) – The name of the operator to construct

  • inputs (list of string) – list of input names

  • outputs (list of string) – list of output names

  • name (string, default None) – optional unique identifier for NodeProto

  • doc_string (string, default None) – optional documentation string for NodeProto

  • domain (string, default None) – optional domain for NodeProto. If it’s None, we will just use default domain (which is empty)

  • **kwargs (dict) – the attributes of the node. The acceptable values are documented in make_attribute().

Returns:

NodeProto

onnx.helper.make_operatorsetid(
domain: str,
version: int
) OperatorSetIdProto[source]

Construct an OperatorSetIdProto.

Parameters:
  • domain (string) – The domain of the operator set id

  • version (integer) – Version of operator set id

Returns:

OperatorSetIdProto

onnx.helper.make_opsetid(
domain: str,
version: int
) OperatorSetIdProto[source]

Construct an OperatorSetIdProto.

Parameters:
  • domain (string) – The domain of the operator set id

  • version (integer) – Version of operator set id

Returns:

OperatorSetIdProto

onnx.helper.make_optional(
name: str, elem_type: <google.protobuf.internal.enum_type_wrapper.EnumTypeWrapper object at 0x7f50aa0a32e0>, value: ~typing.Optional[~typing.Any]
) OptionalProto[source]

Make an Optional with specified value arguments.

onnx.helper.make_optional_type_proto(
inner_type_proto: TypeProto
) TypeProto[source]

Makes an optional TypeProto.

onnx.helper.make_sequence(
name: str, elem_type: <google.protobuf.internal.enum_type_wrapper.EnumTypeWrapper object at 0x7f50be9b37c0>, values: ~typing.Sequence[~typing.Any]
) SequenceProto[source]

Make a Sequence with specified value arguments.

onnx.helper.make_sequence_type_proto(
inner_type_proto: TypeProto
) TypeProto[source]

Makes a sequence TypeProto.

onnx.helper.make_sparse_tensor(
values: TensorProto,
indices: TensorProto,
dims: Sequence[int]
) SparseTensorProto[source]

Construct a SparseTensorProto

Parameters:
Returns:

SparseTensorProto

onnx.helper.make_sparse_tensor_type_proto(
elem_type: int,
shape: Optional[Sequence[Optional[Union[str, int]]]],
shape_denotation: Optional[List[str]] = None
) TypeProto[source]

Makes a SparseTensor TypeProto based on the data type and shape.

onnx.helper.make_sparse_tensor_value_info(
name: str,
elem_type: int,
shape: Optional[Sequence[Optional[Union[str, int]]]],
doc_string: str = '',
shape_denotation: Optional[List[str]] = None
) ValueInfoProto[source]

Makes a SparseTensor ValueInfoProto based on the data type and shape.

onnx.helper.make_tensor(
name: str,
data_type: int,
dims: Sequence[int],
vals: Any,
raw: bool = False
) TensorProto[source]

Make a TensorProto with specified arguments. If raw is False, this function will choose the corresponding proto field to store the values based on data_type. If raw is True, use “raw_data” proto field to store the values, and values should be of type bytes in this case.

Parameters:
  • name (string) – tensor name

  • data_type (int) – a value such as onnx.TensorProto.FLOAT

  • dims (List[int]) – shape

  • vals – values

  • raw (bool) – if True, vals contains the serialized content of the tensor, otherwise, vals should be a list of values of the type defined by data_type

Returns:

TensorProto

onnx.helper.make_tensor_sequence_value_info(
name: str,
elem_type: int,
shape: Optional[Sequence[Optional[Union[str, int]]]],
doc_string: str = '',
elem_shape_denotation: Optional[List[str]] = None
) ValueInfoProto[source]

Makes a Sequence[Tensors] ValueInfoProto based on the data type and shape.

onnx.helper.make_tensor_type_proto(
elem_type: int,
shape: Optional[Sequence[Optional[Union[str, int]]]],
shape_denotation: Optional[List[str]] = None
) TypeProto[source]

Makes a Tensor TypeProto based on the data type and shape.

onnx.helper.make_training_info(
algorithm: GraphProto,
algorithm_bindings: List[Tuple[str, str]],
initialization: Optional[GraphProto],
initialization_bindings: Optional[List[Tuple[str, str]]]
) TrainingInfoProto[source]
onnx.helper.make_tensor_type_proto(
elem_type: int,
shape: Optional[Sequence[Optional[Union[str, int]]]],
shape_denotation: Optional[List[str]] = None
) TypeProto[source]

Makes a Tensor TypeProto based on the data type and shape.

onnx.helper.make_tensor_value_info(
name: str,
elem_type: int,
shape: Optional[Sequence[Optional[Union[str, int]]]],
doc_string: str = '',
shape_denotation: Optional[List[str]] = None
) ValueInfoProto[source]

Makes a ValueInfoProto based on the data type and shape.

onnx.helper.make_value_info(
name: str,
type_proto: TypeProto,
doc_string: str = ''
) ValueInfoProto[source]

Makes a ValueInfoProto with the given type_proto.

getter

onnx.helper.get_attribute_value(
attr: AttributeProto
) Any[source]

print

onnx.helper.printable_attribute(
attr: AttributeProto,
subgraphs: bool = False
) Union[str, Tuple[str, List[GraphProto]]][source]
onnx.helper.printable_dim(
dim: Dimension
) str[source]
onnx.helper.printable_graph(
graph: GraphProto,
prefix: str = ''
) str[source]

Display a GraphProto as a string.

Parameters:
  • graph (GraphProto) – the graph to display

  • prefix (string) – prefix of every line

Returns:

string

onnx.helper.printable_node(
node: NodeProto,
prefix: str = '',
subgraphs: bool = False
) Union[str, Tuple[str, List[GraphProto]]][source]
onnx.helper.printable_tensor_proto(
t: TensorProto
) str[source]
onnx.helper.printable_type(
t: TypeProto
) str[source]
onnx.helper.printable_value_info(
v: ValueInfoProto
) str[source]