onnx.helper¶
|
Given list of opset ids, determine minimum IR version required |
|
|
|
Makes an AttributeProto based on the value type. |
|
|
|
Construct a GraphProto |
|
Make a Map with specified key-value pair arguments. |
|
Construct a ModelProto |
|
Construct a NodeProto. |
|
Construct an OperatorSetIdProto. |
|
Construct an OperatorSetIdProto. |
|
Make an Optional with specified value arguments. |
|
Makes an optional TypeProto. |
|
Make a Sequence with specified value arguments. |
|
Makes a sequence TypeProto. |
|
Construct a SparseTensorProto |
|
Makes a SparseTensor TypeProto based on the data type and shape. |
|
Makes a SparseTensor ValueInfoProto based on the data type and shape. |
|
Make a TensorProto with specified arguments. |
|
Makes a Sequence[Tensors] ValueInfoProto based on the data type and shape. |
|
Makes a Tensor TypeProto based on the data type and shape. |
|
|
|
Makes a Tensor TypeProto based on the data type and shape. |
|
Makes a ValueInfoProto based on the data type and shape. |
|
Makes a ValueInfoProto with the given type_proto. |
|
|
|
|
|
Display a GraphProto as a string. |
|
|
getter¶
-
onnx.helper.get_attribute_value(
attr: AttributeProto
) Any [source]¶
print¶
-
onnx.helper.printable_attribute(
attr: AttributeProto,
subgraphs: bool = False
) Union[str, Tuple[str, List[GraphProto]]] [source]¶
-
onnx.helper.printable_graph(
graph: GraphProto,
prefix: str = ''
) str [source]¶ Display a GraphProto as a string.
- Parameters:
graph (GraphProto) – the graph to display
prefix (string) – prefix of every line
- Returns:
string
-
onnx.helper.printable_node(
node: NodeProto,
prefix: str = '',
subgraphs: bool = False
) Union[str, Tuple[str, List[GraphProto]]] [source]¶
-
onnx.helper.printable_tensor_proto(
t: TensorProto
) str [source]¶
-
onnx.helper.printable_value_info(
v: ValueInfoProto
) str [source]¶
tools¶
-
onnx.helper.find_min_ir_version_for(
opsetidlist: List[OperatorSetIdProto]
) int [source]¶ Given list of opset ids, determine minimum IR version required
make function¶
All functions uses to create an ONNX graph.
-
onnx.helper.make_attribute(
key: str,
value: Any,
doc_string: Optional[str] = None
) AttributeProto [source]¶ Makes an AttributeProto based on the value type.
-
onnx.helper.make_empty_tensor_value_info(
name: str
) ValueInfoProto [source]¶
-
onnx.helper.make_function(
domain: str,
fname: str,
inputs: Sequence[str],
outputs: Sequence[str],
nodes: Sequence[NodeProto],
opset_imports: Sequence[OperatorSetIdProto],
attributes: Optional[Sequence[str]] = [],
doc_string: Optional[str] = None
) FunctionProto [source]¶
-
onnx.helper.make_graph(
nodes: Sequence[NodeProto],
name: str,
inputs: Sequence[ValueInfoProto],
outputs: Sequence[ValueInfoProto],
initializer: Optional[Sequence[TensorProto]] = None,
doc_string: Optional[str] = None,
value_info: Sequence[ValueInfoProto] = [],
sparse_initializer: Optional[Sequence[SparseTensorProto]] = None
) GraphProto [source]¶ Construct a GraphProto
- Parameters:
nodes – list of NodeProto
name (string) – graph name
inputs – list of ValueInfoProto
outputs – list of ValueInfoProto
initializer – list of TensorProto
doc_string (string) – graph documentation
value_info – list of ValueInfoProto
sparse_initializer – list of SparseTensorProto
- Returns:
GraphProto
-
onnx.helper.make_map(
name: str,
key_type: int,
keys: List[Any],
values: SequenceProto
) MapProto [source]¶ Make a Map with specified key-value pair arguments.
Criteria for conversion: - Keys and Values must have the same number of elements - Every key in keys must be of the same type - Every value in values must be of the same type
-
onnx.helper.make_model(
graph: GraphProto,
**kwargs: Any
) ModelProto [source]¶ Construct a ModelProto
- Parameters:
graph (GraphProto) – make_graph returns
**kwargs – any attribute to add to the returned instance
- Returns:
ModelProto
-
onnx.helper.make_node(
op_type: str,
inputs: Sequence[str],
outputs: Sequence[str],
name: Optional[str] = None,
doc_string: Optional[str] = None,
domain: Optional[str] = None,
**kwargs: Any
) NodeProto [source]¶ Construct a NodeProto.
- Parameters:
op_type (string) – The name of the operator to construct
inputs (list of string) – list of input names
outputs (list of string) – list of output names
name (string, default None) – optional unique identifier for NodeProto
doc_string (string, default None) – optional documentation string for NodeProto
domain (string, default None) – optional domain for NodeProto. If it’s None, we will just use default domain (which is empty)
**kwargs (dict) – the attributes of the node. The acceptable values are documented in
make_attribute()
.
- Returns:
NodeProto
-
onnx.helper.make_operatorsetid(
domain: str,
version: int
) OperatorSetIdProto [source]¶ Construct an OperatorSetIdProto.
- Parameters:
domain (string) – The domain of the operator set id
version (integer) – Version of operator set id
- Returns:
OperatorSetIdProto
-
onnx.helper.make_opsetid(
domain: str,
version: int
) OperatorSetIdProto [source]¶ Construct an OperatorSetIdProto.
- Parameters:
domain (string) – The domain of the operator set id
version (integer) – Version of operator set id
- Returns:
OperatorSetIdProto
-
onnx.helper.make_optional(
name: str, elem_type: <google.protobuf.internal.enum_type_wrapper.EnumTypeWrapper object at 0x7f50aa0a32e0>, value: ~typing.Optional[~typing.Any]
) OptionalProto [source]¶ Make an Optional with specified value arguments.
-
onnx.helper.make_optional_type_proto(
inner_type_proto: TypeProto
) TypeProto [source]¶ Makes an optional TypeProto.
-
onnx.helper.make_sequence(
name: str, elem_type: <google.protobuf.internal.enum_type_wrapper.EnumTypeWrapper object at 0x7f50be9b37c0>, values: ~typing.Sequence[~typing.Any]
) SequenceProto [source]¶ Make a Sequence with specified value arguments.
-
onnx.helper.make_sequence_type_proto(
inner_type_proto: TypeProto
) TypeProto [source]¶ Makes a sequence TypeProto.
-
onnx.helper.make_sparse_tensor(
values: TensorProto,
indices: TensorProto,
dims: Sequence[int]
) SparseTensorProto [source]¶ Construct a SparseTensorProto
- Parameters:
values (TensorProto) – the values
indices (TensorProto) – the indices
dims – the shape
- Returns:
SparseTensorProto
-
onnx.helper.make_sparse_tensor_type_proto(
elem_type: int,
shape: Optional[Sequence[Optional[Union[str, int]]]],
shape_denotation: Optional[List[str]] = None
) TypeProto [source]¶ Makes a SparseTensor TypeProto based on the data type and shape.
-
onnx.helper.make_sparse_tensor_value_info(
name: str,
elem_type: int,
shape: Optional[Sequence[Optional[Union[str, int]]]],
doc_string: str = '',
shape_denotation: Optional[List[str]] = None
) ValueInfoProto [source]¶ Makes a SparseTensor ValueInfoProto based on the data type and shape.
-
onnx.helper.make_tensor(
name: str,
data_type: int,
dims: Sequence[int],
vals: Any,
raw: bool = False
) TensorProto [source]¶ Make a TensorProto with specified arguments. If raw is False, this function will choose the corresponding proto field to store the values based on data_type. If raw is True, use “raw_data” proto field to store the values, and values should be of type bytes in this case.
- Parameters:
- Returns:
TensorProto
-
onnx.helper.make_tensor_sequence_value_info(
name: str,
elem_type: int,
shape: Optional[Sequence[Optional[Union[str, int]]]],
doc_string: str = '',
elem_shape_denotation: Optional[List[str]] = None
) ValueInfoProto [source]¶ Makes a Sequence[Tensors] ValueInfoProto based on the data type and shape.
-
onnx.helper.make_tensor_type_proto(
elem_type: int,
shape: Optional[Sequence[Optional[Union[str, int]]]],
shape_denotation: Optional[List[str]] = None
) TypeProto [source]¶ Makes a Tensor TypeProto based on the data type and shape.
-
onnx.helper.make_training_info(
algorithm: GraphProto,
algorithm_bindings: List[Tuple[str, str]],
initialization: Optional[GraphProto],
initialization_bindings: Optional[List[Tuple[str, str]]]
) TrainingInfoProto [source]¶
-
onnx.helper.make_tensor_type_proto(
elem_type: int,
shape: Optional[Sequence[Optional[Union[str, int]]]],
shape_denotation: Optional[List[str]] = None
) TypeProto [source]¶ Makes a Tensor TypeProto based on the data type and shape.
getter¶
-
onnx.helper.get_attribute_value(
attr: AttributeProto
) Any [source]¶
print¶
-
onnx.helper.printable_attribute(
attr: AttributeProto,
subgraphs: bool = False
) Union[str, Tuple[str, List[GraphProto]]] [source]¶
-
onnx.helper.printable_graph(
graph: GraphProto,
prefix: str = ''
) str [source]¶ Display a GraphProto as a string.
- Parameters:
graph (GraphProto) – the graph to display
prefix (string) – prefix of every line
- Returns:
string
-
onnx.helper.printable_node(
node: NodeProto,
prefix: str = '',
subgraphs: bool = False
) Union[str, Tuple[str, List[GraphProto]]] [source]¶
-
onnx.helper.printable_tensor_proto(
t: TensorProto
) str [source]¶
-
onnx.helper.printable_value_info(
v: ValueInfoProto
) str [source]¶