onnx.backend¶
Backend¶
- class onnx.backend.base.Backend[source]¶
-
classmethod run_node(
node: NodeProto,
inputs: Any,
device: str = 'CPU',
outputs_info: Optional[Sequence[Tuple[dtype, Tuple[int, ...]]]] = None,
**kwargs: Dict[str, Any]
) Optional[Tuple[Any, ...]] [source]¶ Simple run one operator and return the results. :param outputs_info: a list of tuples, which contains the element type and :param shape of each output. First element of the tuple is the dtype: :param and: :param the second element is the shape. More use case can be found in: :param https: //github.com/onnx/onnx/blob/main/onnx/backend/test/runner/__init__.py
-
classmethod run_node(
BackendRep¶
collect_snippets¶
Device¶
DeviceType¶
load_model_tests¶
Runner¶
-
class onnx.backend.test.runner.Runner(
backend: Type[Backend],
parent_module: Optional[str] = None
)[source]¶ - property test_cases: Dict[str, Type[TestCase]]¶
List of test cases to be applied on the parent scope Example usage:
globals().update(BackendTest(backend).test_cases)
- property test_suite: TestSuite¶
TestSuite that can be run by TestRunner Example usage:
unittest.TextTestRunner().run(BackendTest(backend).test_suite)
TestCase¶
-
class onnx.backend.test.case.test_case.TestCase(
name: str,
model_name: str,
url: Optional[str],
model_dir: Optional[str],
model: Optional[onnx.onnx_ml_pb2.ModelProto],
data_sets: Optional[Sequence[Tuple[Sequence[numpy.ndarray], Sequence[numpy.ndarray]]]],
kind: str,
rtol: float,
atol: float,
__test__: bool = False
)[source]¶