onnx.helper#
|
Given list of opset ids, determine minimum IR version required |
Get all tensor types from TensorProto. |
|
|
|
|
Makes an AttributeProto based on the value type. |
|
|
|
Construct a GraphProto |
|
Make a Map with specified key-value pair arguments. |
|
Construct a ModelProto |
|
Construct a NodeProto. |
|
Construct an OperatorSetIdProto. |
|
Construct an OperatorSetIdProto. |
|
Make an Optional with specified value arguments. |
|
Makes an optional TypeProto. |
|
Make a Sequence with specified value arguments. |
|
Makes a sequence TypeProto. |
|
Construct a SparseTensorProto |
|
Makes a SparseTensor TypeProto based on the data type and shape. |
|
Makes a SparseTensor ValueInfoProto based on the data type and shape. |
|
Make a TensorProto with specified arguments. |
|
Makes a Sequence[Tensors] ValueInfoProto based on the data type and shape. |
|
Makes a Tensor TypeProto based on the data type and shape. |
|
|
|
Makes a Tensor TypeProto based on the data type and shape. |
|
Makes a ValueInfoProto based on the data type and shape. |
|
Makes a ValueInfoProto with the given type_proto. |
|
Convert a numpy's dtype to corresponding tensor type. |
|
|
|
|
|
Display a GraphProto as a string. |
|
|
|
Convert a TensorProto's data_type to corresponding numpy dtype. |
Convert a TensorProto's data_type to corresponding data_type for storage. |
|
|
Get the name of given TensorProto's data_type. |
|
Convert a TensorProto's data_type to corresponding field name for storage. |
getter#
- onnx.helper.get_attribute_value(attr: AttributeProto) Any [source]#
print#
- onnx.helper.printable_attribute(attr: AttributeProto, subgraphs: bool = False) Union[str, Tuple[str, List[GraphProto]]] [source]#
- onnx.helper.printable_graph(graph: GraphProto, prefix: str = '') str [source]#
Display a GraphProto as a string.
- Parameters:
graph (GraphProto) – the graph to display
prefix (string) – prefix of every line
- Returns:
string
- onnx.helper.printable_node(node: NodeProto, prefix: str = '', subgraphs: bool = False) Union[str, Tuple[str, List[GraphProto]]] [source]#
- onnx.helper.printable_tensor_proto(t: TensorProto) str [source]#
- onnx.helper.printable_value_info(v: ValueInfoProto) str [source]#
tools#
- onnx.helper.find_min_ir_version_for(opsetidlist: List[OperatorSetIdProto]) int [source]#
Given list of opset ids, determine minimum IR version required
make function#
All functions uses to create an ONNX graph.
- onnx.helper.make_attribute(key: str, value: Any, doc_string: Optional[str] = None) AttributeProto [source]#
Makes an AttributeProto based on the value type.
- onnx.helper.make_empty_tensor_value_info(name: str) ValueInfoProto [source]#
- onnx.helper.make_function(domain: str, fname: str, inputs: Sequence[str], outputs: Sequence[str], nodes: Sequence[NodeProto], opset_imports: Sequence[OperatorSetIdProto], attributes: Optional[Sequence[str]] = [], doc_string: Optional[str] = None) FunctionProto [source]#
- onnx.helper.make_graph(nodes: Sequence[NodeProto], name: str, inputs: Sequence[ValueInfoProto], outputs: Sequence[ValueInfoProto], initializer: Optional[Sequence[TensorProto]] = None, doc_string: Optional[str] = None, value_info: Sequence[ValueInfoProto] = [], sparse_initializer: Optional[Sequence[SparseTensorProto]] = None) GraphProto [source]#
Construct a GraphProto
- Parameters:
nodes – list of NodeProto
name (string) – graph name
inputs – list of ValueInfoProto
outputs – list of ValueInfoProto
initializer – list of TensorProto
doc_string (string) – graph documentation
value_info – list of ValueInfoProto
sparse_initializer – list of SparseTensorProto
- Returns:
GraphProto
- onnx.helper.make_map(name: str, key_type: int, keys: List[Any], values: SequenceProto) MapProto [source]#
Make a Map with specified key-value pair arguments.
Criteria for conversion: - Keys and Values must have the same number of elements - Every key in keys must be of the same type - Every value in values must be of the same type
- onnx.helper.make_model(graph: GraphProto, **kwargs: Any) ModelProto [source]#
Construct a ModelProto
- Parameters:
graph (GraphProto) – make_graph returns
**kwargs – any attribute to add to the returned instance
- Returns:
ModelProto
- onnx.helper.make_node(op_type: str, inputs: Sequence[str], outputs: Sequence[str], name: Optional[str] = None, doc_string: Optional[str] = None, domain: Optional[str] = None, **kwargs: Any) NodeProto [source]#
Construct a NodeProto.
- Parameters:
op_type (string) – The name of the operator to construct
inputs (list of string) – list of input names
outputs (list of string) – list of output names
name (string, default None) – optional unique identifier for NodeProto
doc_string (string, default None) – optional documentation string for NodeProto
domain (string, default None) – optional domain for NodeProto. If it’s None, we will just use default domain (which is empty)
**kwargs (dict) – the attributes of the node. The acceptable values are documented in
make_attribute()
.
- Returns:
NodeProto
- onnx.helper.make_operatorsetid(domain: str, version: int) OperatorSetIdProto [source]#
Construct an OperatorSetIdProto.
- Parameters:
domain (string) – The domain of the operator set id
version (integer) – Version of operator set id
- Returns:
OperatorSetIdProto
- onnx.helper.make_opsetid(domain: str, version: int) OperatorSetIdProto [source]#
Construct an OperatorSetIdProto.
- Parameters:
domain (string) – The domain of the operator set id
version (integer) – Version of operator set id
- Returns:
OperatorSetIdProto
- onnx.helper.make_optional(name: str, elem_type: <google.protobuf.internal.enum_type_wrapper.EnumTypeWrapper object at 0x7efc952504f0>, value: ~typing.Optional[~typing.Any]) OptionalProto [source]#
Make an Optional with specified value arguments.
- onnx.helper.make_optional_type_proto(inner_type_proto: TypeProto) TypeProto [source]#
Makes an optional TypeProto.
- onnx.helper.make_sequence(name: str, elem_type: <google.protobuf.internal.enum_type_wrapper.EnumTypeWrapper object at 0x7efc95250430>, values: ~typing.Sequence[~typing.Any]) SequenceProto [source]#
Make a Sequence with specified value arguments.
- onnx.helper.make_sequence_type_proto(inner_type_proto: TypeProto) TypeProto [source]#
Makes a sequence TypeProto.
- onnx.helper.make_sparse_tensor(values: TensorProto, indices: TensorProto, dims: Sequence[int]) SparseTensorProto [source]#
Construct a SparseTensorProto
- Parameters:
values (TensorProto) – the values
indices (TensorProto) – the indices
dims – the shape
- Returns:
SparseTensorProto
- onnx.helper.make_sparse_tensor_type_proto(elem_type: int, shape: Optional[Sequence[Optional[Union[str, int]]]], shape_denotation: Optional[List[str]] = None) TypeProto [source]#
Makes a SparseTensor TypeProto based on the data type and shape.
- onnx.helper.make_sparse_tensor_value_info(name: str, elem_type: int, shape: Optional[Sequence[Optional[Union[str, int]]]], doc_string: str = '', shape_denotation: Optional[List[str]] = None) ValueInfoProto [source]#
Makes a SparseTensor ValueInfoProto based on the data type and shape.
- onnx.helper.make_tensor(name: str, data_type: int, dims: Sequence[int], vals: Any, raw: bool = False) TensorProto [source]#
Make a TensorProto with specified arguments. If raw is False, this function will choose the corresponding proto field to store the values based on data_type. If raw is True, use “raw_data” proto field to store the values, and values should be of type bytes in this case.
- Parameters:
- Returns:
TensorProto
- onnx.helper.make_tensor_sequence_value_info(name: str, elem_type: int, shape: Optional[Sequence[Optional[Union[str, int]]]], doc_string: str = '', elem_shape_denotation: Optional[List[str]] = None) ValueInfoProto [source]#
Makes a Sequence[Tensors] ValueInfoProto based on the data type and shape.
- onnx.helper.make_tensor_type_proto(elem_type: int, shape: Optional[Sequence[Optional[Union[str, int]]]], shape_denotation: Optional[List[str]] = None) TypeProto [source]#
Makes a Tensor TypeProto based on the data type and shape.
- onnx.helper.make_training_info(algorithm: GraphProto, algorithm_bindings: List[Tuple[str, str]], initialization: Optional[GraphProto], initialization_bindings: Optional[List[Tuple[str, str]]]) TrainingInfoProto [source]#
- onnx.helper.make_tensor_type_proto(elem_type: int, shape: Optional[Sequence[Optional[Union[str, int]]]], shape_denotation: Optional[List[str]] = None) TypeProto [source]#
Makes a Tensor TypeProto based on the data type and shape.
getter#
- onnx.helper.get_attribute_value(attr: AttributeProto) Any [source]#
print#
- onnx.helper.printable_attribute(attr: AttributeProto, subgraphs: bool = False) Union[str, Tuple[str, List[GraphProto]]] [source]#
- onnx.helper.printable_graph(graph: GraphProto, prefix: str = '') str [source]#
Display a GraphProto as a string.
- Parameters:
graph (GraphProto) – the graph to display
prefix (string) – prefix of every line
- Returns:
string
- onnx.helper.printable_node(node: NodeProto, prefix: str = '', subgraphs: bool = False) Union[str, Tuple[str, List[GraphProto]]] [source]#
- onnx.helper.printable_tensor_proto(t: TensorProto) str [source]#
- onnx.helper.printable_value_info(v: ValueInfoProto) str [source]#
type mappings#
- onnx.helper.get_all_tensor_dtypes() KeysView[int] [source]#
Get all tensor types from TensorProto.
- Returns:
all tensor types from TensorProto
- onnx.helper.np_dtype_to_tensor_dtype(np_dtype: dtype) int [source]#
Convert a numpy’s dtype to corresponding tensor type. It can be used while converting numpy arrays to tensors.
- Parameters:
np_dtype – numpy’s data_type
- Returns:
TensorsProto’s data_type
- onnx.helper.tensor_dtype_to_field(tensor_dtype: int) str [source]#
Convert a TensorProto’s data_type to corresponding field name for storage. It can be used while making tensors.
- Parameters:
tensor_dtype – TensorProto’s data_type
- Returns:
field name
- onnx.helper.tensor_dtype_to_np_dtype(tensor_dtype: int) dtype [source]#
Convert a TensorProto’s data_type to corresponding numpy dtype. It can be used while making tensor.
- Parameters:
tensor_dtype – TensorProto’s data_type
- Returns:
numpy’s data_type