Source code for onnx.utils

# SPDX-License-Identifier: Apache-2.0

import os
from typing import List, Tuple

import onnx.checker
import onnx.helper
import onnx.shape_inference
from onnx import FunctionProto, ModelProto, NodeProto, TensorProto, ValueInfoProto


[docs]class Extractor: def __init__(self, model: ModelProto) -> None: self.model = onnx.shape_inference.infer_shapes(model) self.graph = self.model.graph self.wmap = self._build_name2obj_dict(self.graph.initializer) self.vimap = self._build_name2obj_dict(self.graph.value_info) @staticmethod def _build_name2obj_dict(objs): # type: ignore return {obj.name: obj for obj in objs} def _collect_new_io_core(self, original_io, io_names_to_extract): # type: ignore original_io_map = self._build_name2obj_dict(original_io) original_io_names = set(original_io_map.keys()) s_io_names_to_extract = set(io_names_to_extract) io_names_to_keep = s_io_names_to_extract & original_io_names new_io_names_to_add = s_io_names_to_extract - original_io_names new_io_tensors = [] for name in io_names_to_keep: new_io_tensors.append(original_io_map[name]) for name in new_io_names_to_add: # activation become input or output new_io_tensors.append(self.vimap[name]) # adjust sequence new_io_tensors_map = self._build_name2obj_dict(new_io_tensors) return [new_io_tensors_map[name] for name in io_names_to_extract] def _collect_new_inputs(self, names: List[str]) -> List[ValueInfoProto]: return self._collect_new_io_core(self.graph.input, names) # type: ignore def _collect_new_outputs(self, names: List[str]) -> List[ValueInfoProto]: return self._collect_new_io_core(self.graph.output, names) # type: ignore def _dfs_search_reachable_nodes( self, node_output_name: str, graph_input_names: List[str], reachable_nodes: List[NodeProto], ) -> None: if node_output_name in graph_input_names: return for node in self.graph.node: # check output_name first to reduce run time if node_output_name not in node.output: continue if node in reachable_nodes: continue reachable_nodes.append(node) for name in node.input: self._dfs_search_reachable_nodes( name, graph_input_names, reachable_nodes ) def _collect_reachable_nodes( self, input_names: List[str], output_names: List[str], ) -> List[NodeProto]: reachable_nodes = list() # type: ignore for name in output_names: self._dfs_search_reachable_nodes(name, input_names, reachable_nodes) # needs to be topology sorted. nodes = [n for n in self.graph.node if n in reachable_nodes] return nodes def _collect_referred_local_functions( self, nodes, # type: List[NodeProto] ): # type: (...) -> List[FunctionProto] # a node in a model graph may refer a function. # a function contains nodes, some of which may in turn refer a function. # we need to find functions referred by graph nodes and # by nodes used to define functions. def find_referred_funcs(nodes, referred_local_functions): # type: ignore new_nodes = [] # type: List[NodeProto] for node in nodes: # check if the node is a function op match_function = next( ( f for f in self.model.functions if f.name == node.op_type and f.domain == node.domain ), None, ) if match_function and match_function not in referred_local_functions: referred_local_functions.append(match_function) new_nodes.extend(match_function.node) return new_nodes referred_local_functions = [] # type: List[FunctionProto] new_nodes = find_referred_funcs(nodes, referred_local_functions) while new_nodes: new_nodes = find_referred_funcs(new_nodes, referred_local_functions) return referred_local_functions def _collect_reachable_tensors( self, nodes: List[NodeProto], ) -> Tuple[List[TensorProto], List[ValueInfoProto]]: all_tensors_name = set() for node in nodes: for name in node.input: all_tensors_name.add(name) for name in node.output: all_tensors_name.add(name) initializer = [self.wmap[t] for t in self.wmap.keys() if t in all_tensors_name] value_info = [self.vimap[t] for t in self.vimap.keys() if t in all_tensors_name] assert len(self.graph.sparse_initializer) == 0 assert len(self.graph.quantization_annotation) == 0 return initializer, value_info def _make_model( self, nodes: List[NodeProto], inputs: List[ValueInfoProto], outputs: List[ValueInfoProto], initializer: List[TensorProto], value_info: List[ValueInfoProto], local_functions: List[FunctionProto], ) -> ModelProto: name = "Extracted from {" + self.graph.name + "}" graph = onnx.helper.make_graph( nodes, name, inputs, outputs, initializer=initializer, value_info=value_info ) meta = { "ir_version": self.model.ir_version, "opset_imports": self.model.opset_import, "producer_name": "onnx.utils.extract_model", "functions": local_functions, } return onnx.helper.make_model(graph, **meta) def extract_model( self, input_names: List[str], output_names: List[str], ) -> ModelProto: inputs = self._collect_new_inputs(input_names) outputs = self._collect_new_outputs(output_names) nodes = self._collect_reachable_nodes(input_names, output_names) initializer, value_info = self._collect_reachable_tensors(nodes) local_functions = self._collect_referred_local_functions(nodes) model = self._make_model( nodes, inputs, outputs, initializer, value_info, local_functions ) return model
[docs]def extract_model( input_path: str, output_path: str, input_names: List[str], output_names: List[str], check_model: bool = True, ) -> None: """Extracts sub-model from an ONNX model. The sub-model is defined by the names of the input and output tensors *exactly*. Note: For control-flow operators, e.g. If and Loop, the _boundary of sub-model_, which is defined by the input and output tensors, should not _cut through_ the subgraph that is connected to the _main graph_ as attributes of these operators. Arguments: input_path (string): The path to original ONNX model. output_path (string): The path to save the extracted ONNX model. input_names (list of string): The names of the input tensors that to be extracted. output_names (list of string): The names of the output tensors that to be extracted. check_model (bool): Whether to run model checker on the extracted model. """ if not os.path.exists(input_path): raise ValueError(f"Invalid input model path: {input_path}") if not output_path: raise ValueError("Output model path shall not be empty!") if not output_names: raise ValueError("Output tensor names shall not be empty!") onnx.checker.check_model(input_path) model = onnx.load(input_path) e = Extractor(model) extracted = e.extract_model(input_names, output_names) onnx.save(extracted, output_path) if check_model: onnx.checker.check_model(output_path)