Source code for onnx.external_data_helper

# SPDX-License-Identifier: Apache-2.0
import os
import re
import sys
import uuid
from itertools import chain
from typing import Callable, Iterable, Optional

from .onnx_pb import AttributeProto, GraphProto, ModelProto, TensorProto


[docs]class ExternalDataInfo: def __init__(self, tensor: TensorProto) -> None: self.location = "" self.offset = None self.length = None self.checksum = None self.basepath = "" for entry in tensor.external_data: setattr(self, entry.key, entry.value) if self.offset: self.offset = int(self.offset) if self.length: self.length = int(self.length)
[docs]def load_external_data_for_tensor(tensor: TensorProto, base_dir: str) -> None: """ Loads data from an external file for tensor. Ideally TensorProto should not hold any raw data but if it does it will be ignored. Arguments: tensor: a TensorProto object. base_dir: directory that contains the external data. """ info = ExternalDataInfo(tensor) file_location = _sanitize_path(info.location) external_data_file_path = os.path.join(base_dir, file_location) with open(external_data_file_path, "rb") as data_file: if info.offset: data_file.seek(info.offset) if info.length: tensor.raw_data = data_file.read(info.length) else: tensor.raw_data = data_file.read()
[docs]def load_external_data_for_model(model: ModelProto, base_dir: str) -> None: """ Loads external tensors into model Arguments: model: ModelProto to load external data to base_dir: directory that contains external data """ for tensor in _get_all_tensors(model): if uses_external_data(tensor): load_external_data_for_tensor(tensor, base_dir) # After loading raw_data from external_data, change the state of tensors tensor.data_location = TensorProto.DEFAULT # and remove external data del tensor.external_data[:]
[docs]def set_external_data( tensor: TensorProto, location: str, offset: Optional[int] = None, length: Optional[int] = None, checksum: Optional[str] = None, basepath: Optional[str] = None, ) -> None: if not tensor.HasField("raw_data"): raise ValueError( "Tensor " + tensor.name + "does not have raw_data field. Cannot set external data for this tensor." ) del tensor.external_data[:] tensor.data_location = TensorProto.EXTERNAL for (k, v) in { "location": location, "offset": int(offset) if offset is not None else None, "length": int(length) if length is not None else None, "checksum": checksum, "basepath": basepath, }.items(): if v is not None: entry = tensor.external_data.add() entry.key = k entry.value = str(v)
[docs]def convert_model_to_external_data( model: ModelProto, all_tensors_to_one_file: bool = True, location: Optional[str] = None, size_threshold: int = 1024, convert_attribute: bool = False, ) -> None: """ Call to set all tensors with raw data as external data. This call should preceed 'save_model'. 'save_model' saves all the tensors data as external data after calling this function. Arguments: model (ModelProto): Model to be converted. all_tensors_to_one_file (bool): If true, save all tensors to one external file specified by location. If false, save each tensor to a file named with the tensor name. location: specify the external file that all tensors to save to. If not specified, will use the model name. size_threshold: Threshold for size of data. Only when tensor's data is >= the size_threshold it will be converted to external data. To convert every tensor with raw data to external data set size_threshold=0. convert_attribute (bool): If true, convert all tensors to external data If false, convert only non-attribute tensors to external data """ tensors = _get_initializer_tensors(model) if convert_attribute: tensors = _get_all_tensors(model) if all_tensors_to_one_file: file_name = str(uuid.uuid1()) if location: file_name = location for tensor in tensors: if ( tensor.HasField("raw_data") and sys.getsizeof(tensor.raw_data) >= size_threshold ): set_external_data(tensor, file_name) else: for tensor in tensors: if ( tensor.HasField("raw_data") and sys.getsizeof(tensor.raw_data) >= size_threshold ): tensor_location = tensor.name if not _is_valid_filename(tensor_location): tensor_location = str(uuid.uuid1()) set_external_data(tensor, tensor_location)
[docs]def convert_model_from_external_data(model: ModelProto) -> None: """ Call to set all tensors which use external data as embedded data. save_model saves all the tensors data as embedded data after calling this function. Arguments: model (ModelProto): Model to be converted. """ for tensor in _get_all_tensors(model): if uses_external_data(tensor): if not tensor.HasField("raw_data"): raise ValueError("raw_data field doesn't exist.") del tensor.external_data[:] tensor.data_location = TensorProto.DEFAULT
[docs]def save_external_data(tensor: TensorProto, base_path: str) -> None: """ Writes tensor data to an external file according to information in the `external_data` field. Arguments: tensor (TensorProto): Tensor object to be serialized base_path: System path of a folder where tensor data is to be stored """ info = ExternalDataInfo(tensor) external_data_file_path = os.path.join(base_path, info.location) # Retrieve the tensor's data from raw_data or load external file if not tensor.HasField("raw_data"): raise ValueError("raw_data field doesn't exist.") # Create file if it doesn't exist if not os.path.isfile(external_data_file_path): open(external_data_file_path, "ab").close() # Open file for reading and writing at random locations ('r+b') with open(external_data_file_path, "r+b") as data_file: data_file.seek(0, 2) if info.offset is not None: # Pad file to required offset if needed file_size = data_file.tell() if info.offset > file_size: data_file.write(b"\0" * (info.offset - file_size)) data_file.seek(info.offset) offset = data_file.tell() data_file.write(tensor.raw_data) set_external_data(tensor, info.location, offset, data_file.tell() - offset)
def _get_all_tensors(onnx_model_proto: ModelProto) -> Iterable[TensorProto]: """Scan an ONNX model for all tensors and return as an iterator.""" return chain( _get_initializer_tensors(onnx_model_proto), _get_attribute_tensors(onnx_model_proto), ) def _recursive_attribute_processor( attribute: AttributeProto, func: Callable[[GraphProto], Iterable[TensorProto]] ) -> Iterable[TensorProto]: """Create an iterator through processing ONNX model attributes with functor.""" if attribute.type == AttributeProto.GRAPH: yield from func(attribute.g) if attribute.type == AttributeProto.GRAPHS: for graph in attribute.graphs: yield from func(graph) def _get_initializer_tensors_from_graph( onnx_model_proto_graph: GraphProto, ) -> Iterable[TensorProto]: """Create an iterator of initializer tensors from ONNX model graph.""" yield from onnx_model_proto_graph.initializer for node in onnx_model_proto_graph.node: for attribute in node.attribute: yield from _recursive_attribute_processor( attribute, _get_initializer_tensors_from_graph ) def _get_initializer_tensors(onnx_model_proto: ModelProto) -> Iterable[TensorProto]: """Create an iterator of initializer tensors from ONNX model.""" yield from _get_initializer_tensors_from_graph(onnx_model_proto.graph) def _get_attribute_tensors_from_graph( onnx_model_proto_graph: GraphProto, ) -> Iterable[TensorProto]: """Create an iterator of tensors from node attributes of an ONNX model graph.""" for node in onnx_model_proto_graph.node: for attribute in node.attribute: if attribute.HasField("t"): yield attribute.t yield from attribute.tensors yield from _recursive_attribute_processor( attribute, _get_attribute_tensors_from_graph ) def _get_attribute_tensors(onnx_model_proto: ModelProto) -> Iterable[TensorProto]: """Create an iterator of tensors from node attributes of an ONNX model.""" yield from _get_attribute_tensors_from_graph(onnx_model_proto.graph) def _sanitize_path(path: str) -> str: """Remove path components which would allow traversing up a directory tree from a base path. Note: This method is currently very basic and should be expanded. """ return path.lstrip("/.") def _is_valid_filename(filename: str) -> bool: """Utility to check whether the provided filename is valid.""" exp = re.compile('^[^<>:;,?"*|/]+$') match = exp.match(filename) if match: return True else: return False def uses_external_data(tensor: TensorProto) -> bool: """Returns true if the tensor stores data in an external location.""" return ( tensor.HasField("data_location") and tensor.data_location == TensorProto.EXTERNAL )
[docs]def remove_external_data_field(tensor: TensorProto, field_key: str) -> None: """ Removes a field from a Tensor's external_data key-value store. Modifies tensor object in place. Arguments: tensor (TensorProto): Tensor object from which value will be removed field_key (string): The key of the field to be removed """ for (i, field) in enumerate(tensor.external_data): if field.key == field_key: del tensor.external_data[i]
[docs]def write_external_data_tensors(model: ModelProto, filepath: str) -> ModelProto: """ Serializes data for all the tensors which have data location set to TensorProto.External. Note: This function also strips basepath information from all tensors' external_data fields. Arguments: model (ModelProto): Model object which is the source of tensors to serialize. filepath: System path to the directory which should be treated as base path for external data. Returns: ModelProto: The modified model object. """ for tensor in _get_all_tensors(model): # Writing to external data happens in 2 passes: # 1. Tensors with raw data which pass the necessary conditions (size threshold etc) are marked for serialization # 2. The raw data in these tensors is serialized to a file # Thus serialize only if tensor has raw data and it was marked for serialization if uses_external_data(tensor) and tensor.HasField("raw_data"): save_external_data(tensor, filepath) tensor.ClearField("raw_data") return model