Coverage for mlprodict/grammar/grammar_sklearn/g_sklearn_main.py: 100%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

5 statements  

1# -*- coding: utf-8 -*- 

2""" 

3@file 

4@brief Main functions to convert machine learned model from *scikit-learn* model. 

5""" 

6from .g_sklearn_identify import identify_interpreter 

7 

8 

9def sklearn2graph(model, output_names=None, **kwargs): 

10 """ 

11 Converts any kind of *scikit-learn* model into a *grammar* model. 

12 

13 @param model scikit-learn model 

14 @param output_names names of the outputs 

15 @param kwargs additional parameters, sent to the converter 

16 @return converter to grammar model 

17 

18 Short list of additional parameters: 

19 - *with_loop*: the pseudo code includes loops, 

20 this option is not available everywhere. 

21 

22 If *output_names* is None, default values 

23 will be given to the inputs and outputs. 

24 One example on how to use this function. 

25 A *scikit-learn* model is trained and converted 

26 into a graph which implements the prediction 

27 function with the *grammar* language. 

28 

29 .. runpython:: 

30 :showcode: 

31 :warningout: DeprecationWarning 

32 

33 from sklearn.linear_model import LogisticRegression 

34 from sklearn.datasets import load_iris 

35 iris = load_iris() 

36 X = iris.data[:, :2] 

37 y = iris.target 

38 y[y == 2] = 1 

39 lr = LogisticRegression() 

40 lr.fit(X, y) 

41 

42 # grammar is the expected scoring model. 

43 from mlprodict.grammar.grammar_sklearn import sklearn2graph 

44 gr = sklearn2graph(lr, output_names=['Prediction', 'Score']) 

45 

46 # We can even check what the function should produce as a score. 

47 # Types are strict. 

48 import numpy 

49 X = numpy.array([[numpy.float32(1), numpy.float32(2)]]) 

50 e2 = gr.execute(Features=X[0, :]) 

51 print(e2) 

52 

53 # We display the result in JSON. 

54 ser = gr.export(lang='json', hook={'array': lambda v: v.tolist(), 

55 'float32': lambda v: float(v)}) 

56 import json 

57 print(json.dumps(ser, sort_keys=True, indent=2)) 

58 

59 For this particular example, the function is calling 

60 :func:`sklearn_logistic_regression <mlprodict.grammar_sklearn.sklearn_converters_linear_model.sklearn_logistic_regression>` 

61 and the code which produces the model looks like: 

62 

63 :: 

64 

65 model = LogisticRegression() 

66 model.fit(...) 

67 

68 coef = model.coef_.ravel() 

69 bias = numpy.float32(model.intercept_[0]) 

70 

71 gr_coef = MLActionCst(coef) 

72 gr_var = MLActionVar(coef, input_names) 

73 gr_bias = MLActionCst(bias) 

74 gr_dot = MLActionTensorDot(gr_coef, gr_var) 

75 gr_dist = MLActionAdd(gr_dot, gr_bias) 

76 gr_sign = MLActionSign(gr_dist) 

77 gr_conc = MLActionConcat(gr_sign, gr_dist) 

78 gr_final = MLModel(gr_conc, output_names, name="LogisticRegression") 

79 

80 The function interal represents any kind of function into a graph. 

81 This graph can easily exported in any format, :epkg:`Python` or any other programming 

82 language. The goal is not to evaluate it as it is slow due to the extra 

83 checkings ran all along the evaluation to make sure types are consistent. 

84 The current implementation supports conversion into C. 

85 

86 .. runpython:: 

87 :showcode: 

88 :warningout: DeprecationWarning 

89 

90 from sklearn.linear_model import LogisticRegression 

91 from sklearn.datasets import load_iris 

92 iris = load_iris() 

93 X = iris.data[:, :2] 

94 y = iris.target 

95 y[y == 2] = 1 

96 lr = LogisticRegression() 

97 lr.fit(X, y) 

98 

99 # a grammar tree is the expected scoring model. 

100 from mlprodict.grammar.grammar_sklearn import sklearn2graph 

101 gr = sklearn2graph(lr, output_names=['Prediction', 'Score']) 

102 

103 # We display the result in JSON. 

104 ccode = gr.export(lang='c') 

105 # We print after a little bit of cleaning. 

106 print("\\n".join(_ for _ in ccode['code'].split("\\n") if "//" not in _)) 

107 

108 Function ``adot``, ``sign``, ``concat`` are implemented in module 

109 :mod:`mlprodict.grammar_sklearn.cc.c_compilation`. Function 

110 :func:`compile_c_function <mlprodict.grammar_sklearn.cc.c_compilation.compile_c_function>` 

111 can compile this with :epkg:`cffi`. 

112 

113 :: 

114 

115 from mlprodict.grammar_sklearn.cc.c_compilation import compile_c_function 

116 fct = compile_c_function(code_c, 2) 

117 e2 = fct(X[0, :]) 

118 print(e2) 

119 

120 The output is the same as the prediction given by *scikit-learn*. 

121 """ 

122 conv = identify_interpreter(model) 

123 return conv(model, output_names=output_names, **kwargs)