Coverage for mlprodict/onnxrt/ops_cpu/op_mod.py: 100%
Shortcuts on this page
r m x toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
Shortcuts on this page
r m x toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1# -*- encoding: utf-8 -*-
2# pylint: disable=E0203,E1101,C0111
3"""
4@file
5@brief Runtime operator.
6"""
7import numpy
8from ._op import OpRun
11class Mod(OpRun):
13 atts = {'fmod': 0}
15 def __init__(self, onnx_node, desc=None, **options):
16 OpRun.__init__(self, onnx_node, desc=desc,
17 expected_attributes=Mod.atts,
18 **options)
20 def _run(self, a, b): # pylint: disable=W0221
21 return (numpy.nan_to_num(numpy.mod(a, b)), )
23 def _infer_shapes(self, x, b): # pylint: disable=W0221
24 return (x, )
26 def _infer_types(self, x, b): # pylint: disable=W0221
27 return (x, )
29 def _infer_sizes(self, *args, **kwargs):
30 res = self.run(*args, **kwargs)
31 return (dict(temp=0), ) + res
33 def to_python(self, inputs):
34 return self._to_python_numpy(inputs, 'mod')