Coverage for mlprodict/onnxrt/ops_cpu/op_hard_sigmoid.py: 100%
Shortcuts on this page
r m x toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
Shortcuts on this page
r m x toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1# -*- encoding: utf-8 -*-
2# pylint: disable=E0203,E1101,C0111
3"""
4@file
5@brief Runtime operator.
6"""
7import numpy
8from ._op import OpRunUnaryNum
11class HardSigmoid(OpRunUnaryNum):
13 atts = {'alpha': 0.2, 'beta': 0.5}
15 def __init__(self, onnx_node, desc=None, **options):
16 OpRunUnaryNum.__init__(self, onnx_node, desc=desc,
17 expected_attributes=HardSigmoid.atts,
18 **options)
20 def _run(self, x): # pylint: disable=W0221
21 if self.inplaces.get(0, False):
22 return self._run_inplace(x)
23 y = numpy.maximum(0, numpy.minimum(1, x * self.alpha + self.beta))
24 return (y, )
26 def _run_inplace(self, x):
27 x *= self.alpha
28 x += self.beta
29 numpy.minimum(x, 1, out=x)
30 numpy.maximum(x, 0, out=x)
31 return (x, )
33 def to_python(self, inputs):
34 return (
35 "import numpy",
36 "return numpy.maximum(0, numpy.minimum(1, {0} * {1} + {2}))".format(
37 inputs[0], self.alpha, self.beta))