Coverage for mlprodict/onnx_conv/onnx_ops/onnx_gradient_op.py: 100%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

55 statements  

1""" 

2@file 

3@brief Custom operators for gradient numbers. 

4""" 

5from skl2onnx.algebra.onnx_operator import OnnxOperator 

6 

7 

8class OnnxYieldOp_1(OnnxOperator): 

9 """ 

10 Defines a custom operator for YieldOp. 

11 """ 

12 

13 since_version = 1 

14 expected_inputs = [('X', 'T')] 

15 expected_outputs = [('Y', 'T')] 

16 input_range = [1, 1] 

17 output_range = [1, 1] 

18 is_deprecated = False 

19 domain = 'com.microsoft' 

20 operator_name = 'YieldOp' 

21 past_version = {} 

22 

23 def __init__(self, X, non_differentiable_outputs=None, 

24 full_shape_outputs=None, op_version=None, **kwargs): 

25 """ 

26 :param X: array or OnnxOperatorMixin 

27 :param non_differentiable_outputs: the indices of the module 

28 outputs that doesn't have a gradient. 

29 :param full_shape_outputs: the indices of the module outputs 

30 that must have full shape. 

31 :param op_version: opset version 

32 :param kwargs: additional parameter 

33 """ 

34 OnnxOperator.__init__( 

35 self, X, op_version=op_version, **kwargs) 

36 self.non_differentiable_outputs = non_differentiable_outputs 

37 self.full_shape_outputs = full_shape_outputs 

38 

39 

40OnnxYieldOp = OnnxYieldOp_1 

41 

42 

43class OnnxBroadcastGradientArgs_1(OnnxOperator): 

44 """ 

45 Defines a custom operator for BroadcastGradientArgs. 

46 Returns the reduction axes for computing gradients of s0 op s1 with 

47 broadcast. The ouput axes are deterministic from last to first. 

48 Output is an empty vector when no reduction is necessary for the 

49 corresponding input. 

50 """ 

51 

52 since_version = 1 

53 expected_inputs = [('a_shape', 'T'), ('b_shape', 'T')] 

54 expected_outputs = [('a_axes', 'T'), ('b_axes', 'T')] 

55 input_range = [2, 2] 

56 output_range = [2, 2] 

57 is_deprecated = False 

58 domain = 'com.microsoft' 

59 operator_name = 'BroadcastGradientArgs' 

60 past_version = {} 

61 

62 def __init__(self, a_shape, b_shape, op_version=None, **kwargs): 

63 """ 

64 :param a_shape: The 1st input shape as Tensor. 

65 :param b_shape: The 2nds input shape as Tensor. 

66 :param op_version: opset version 

67 :param kwargs: additional parameter 

68 """ 

69 OnnxOperator.__init__( 

70 self, a_shape, b_shape, op_version=op_version, **kwargs) 

71 

72 

73OnnxBroadcastGradientArgs = OnnxBroadcastGradientArgs_1 

74 

75 

76class OnnxFusedMatMul_1(OnnxOperator): 

77 """ 

78 MatMul and Gemm without a C. 

79 """ 

80 

81 since_version = 1 

82 expected_inputs = [('X', 'T'), ('X', 'T')] 

83 expected_outputs = [('Z', 'T')] 

84 input_range = [2, 2] 

85 output_range = [1, 1] 

86 is_deprecated = False 

87 domain = 'com.microsoft' 

88 operator_name = 'FusedMatMul' 

89 past_version = {} 

90 

91 def __init__(self, X, Y, transA=0, transB=0, 

92 op_version=None, **kwargs): 

93 """ 

94 :param X: first matrix 

95 :param Y: second matrix 

96 :param transA: transpose first matrix 

97 :param transB: transpose second matrix 

98 :param op_version: opset version 

99 :param kwargs: additional parameter 

100 """ 

101 OnnxOperator.__init__( 

102 self, X, Y, transA=transA, transB=transB, 

103 op_version=op_version, **kwargs) 

104 

105 

106OnnxFusedMatMul = OnnxFusedMatMul_1 

107 

108 

109class OnnxSoftmaxGrad_13(OnnxOperator): 

110 """ 

111 Gradient of Softmax. 

112 SoftmaxGrad computes :math:`Y * ( dY - ReduceSum(Y * dY))`. 

113 ONNX does not have a dot product, 

114 which can be simulated as a pointwise-multiplication ("Mul"), 

115 followed by a "ReduceSum". Unfortunately, the treatment of "axis" 

116 is different in "SoftmaxGrad" and "ReduceSum". 

117 If axis=k for SoftmaxGrad, we need to specify [k, ..., n-1] as the axes of 

118 reduction for "ReduceSum", after accounting for negative-axis specification. 

119 An alternative solution would be to Flatten inputs to 2D and then reshape 

120 output back to original shape. Hopefully, many of these ops can be optimized 

121 away in the common-case of statically-known shapes. 

122 """ 

123 

124 since_version = 1 

125 expected_inputs = [('grad', 'T'), ('prob', 'T')] 

126 expected_outputs = [('Y', 'T')] 

127 input_range = [2, 2] 

128 output_range = [1, 1] 

129 is_deprecated = False 

130 domain = 'com.microsoft' 

131 operator_name = 'SoftmaxGrad_13' 

132 past_version = {} 

133 

134 def __init__(self, grad, prob, op_version=None, **kwargs): 

135 """ 

136 :param grad: gradient 

137 :param prob: probablities 

138 :param op_version: opset version 

139 :param kwargs: additional parameter 

140 """ 

141 OnnxOperator.__init__( 

142 self, grad, prob, op_version=op_version, **kwargs) 

143 

144 

145OnnxSoftmaxGrad = OnnxSoftmaxGrad_13